Nuclear Astrophysics at LUNA

David Rapagnani – Università degli Studi di Napoli "Federico II"

david.rapagnani@unina.it

'UNN

INFN

16/09/2024

NPA XI - Dresden, 15-20 Sep. 2024

Laboratory for Underground Nuclear Astrophysics

- Located in the Grand Sasso Laboratory of the Italian Institute for Nuclear Physics (LNGS-INFN)
- 1400 m (3800 m.w.e.) grant a background reduction by:
 - ➢ 6 orders of magnitude for muons
 - > 3 orders of magnitude for neutrons
- Further background reduction using additional passive shielding (Lead, Copper, BPE) and ultrapure materials

LUNA-400 and Ion Beam Facility «Bellotti»

Formicola et al. NIM A 507 (2003) 609–616

Beam energy (keV)		Beam intensity on target (uA)		
H+	He+	H+	He+	
50-400	50-400	250	250	

Beam intensity on target at different terminal voltage

lon specie	Terminal Voltage			
	0.3 MV – 0.5 MV	0.5 MV - 3.5 MV		
¹ H ⁺	500 µA	1000 µA		
⁴ He+	300 µA	500 µA		
¹² C ⁺	100 µA	150 µA		
¹² C ⁺²	60 µA	100 µA		
Number of b	2			
Terminal Vol	0.3 – 3.5 MV			

- OSAT successfully concluded in **Spring 2023**
- First beam given to LUNA the 19th June 2023 for the commissioning of the machine by the study of the ¹⁴N(p,γ)¹⁵O
- Presently under study ${}^{22}\text{Ne}(\alpha,n){}^{25}\text{Mg}$

LUNA-400 and I LUNA400 reaction list

Beam energy (keV)		Beam intensity on
H+ He+		more details in Antonio Caciolli talk
50-400	50-400	
16/09/2	2024	NP

2 H(p, γ) 3 He - Mossa et al. Nature 587, 210-213 (2020) ⁶Li(p, γ)⁷Be - Piatti EPJ Web of Conferences 279, 11012 (2023) ${}^{10}B(\alpha,p){}^{13}C$, ${}^{10}B(\alpha,d){}^{12}C$ and ${}^{10}B(\alpha,n){}^{13}N$ – planned for 2025 ^{12,13}C(p,γ)^{13,14}N - Skowronski et al. PRL131, 162701 (2023) ¹³C(α,n)¹⁶O - Ciani et al. 2021 PRL 127, 152701 $^{14}N(p,\gamma)^{15}O$ - Imbriani et al. 2005 Eur. Phys. J. A 25, 455–466 -> low energy resonance under measurement now $^{15}N(p,\gamma)^{16}O - LeBlanc et al. PRC$ **82**, 055804¹⁶O(p,γ)¹⁷F - under measurement now ¹⁷O(p,γ)¹⁸F - Gesuè et al. PRL133, 052701 (2024) $^{17}O(p,\alpha)^{14}N$ - Bruno et al. PRL 117, 142502 (2016) $^{18}O(p,\gamma)^{19}F$ - Pantaleo et al. 2021 PRC104, 025802 • $^{18}O(p,\alpha)^{15}N$ - Bruno et al. PLB790, 237-242 (2019) • $^{19}F(p,\gamma)^{20}Ne$ - planned for 2025 ²⁰Ne(p,γ)²¹Na - Masha et al. PRC 108, L052801 (2023) • ${}^{21}Ne(p,\gamma){}^{22}Na - Under analysis now$ • ²²Ne(p,γ)²³Na - Takács PRC 109, 064627 (2024) • ²²Ne(α,γ)²³Na - Piatti et al. EPJ A 58, 194 (2022) • 23 Na(p, γ) 24 Mg - Boeltzig et al. PRC106, 045801 (2022) • ${}^{23}Na(p,\alpha){}^{20}Ne$ – under measurement now • ${}^{24,25,26}Mg(p,\gamma){}^{25,26,27}Al - Limata et al. PRC C 82, 015801 (2010)$ -> additional measurements in 2025

ed

hine ۶O

LUNA-400 and Ion Beam Facility «Bellotti»

Formicola et al. NIM A 507 (2003) 609–616

LUNA400 reaction list

- ²H(p,γ)³He Mossa et al. Nature 587, 210-213 (2020)
- ⁶Li(p,γ)⁷Be Piatti EPJ Web of Conferences 279, 11012 (2023)

ed

hine

δÔ

LUNA-400 and Ion Beam Facility «Bellotti»

Formicola et al. NIM A 507 (2003) 609–616

IBF reaction list

- ${}^{14}N(p,\gamma){}^{15}O$ under analysis
- ²²Ne(a,n)²⁵Mg data taking
- ${}^{12}C+{}^{12}C planned$ for beginning 2025
- ${}^{22}Ne(\alpha,\gamma){}^{26}Mg$ planned for end 2025

Beam energy (keV)		Beam intensity on target (uA)		
H+	He+	H+	He+	
50-400	50-400	250	250	

Beam intensity on target at different terminal voltage

lon specie	Terminal Voltage			
	0.3 MV – 0.5 MV	0.5 MV - 3.5 MV		
¹ H⁺	500 µA	1000 µA		
⁴ He+	300 µA	500 µA		
¹² C+	100 µA	150 µA		
¹² C ⁺²	60 µA	100 µA		
	2			
Number of b				
Terminal Vol	0.3 – 3.5 MV			

- OSAT successfully concluded in **Spring 2023**
- First beam given to LUNA the
 19th June 2023 for the
 commissioning of the machine
 by the study of the ¹⁴N(p,γ)¹⁵O
- Presently under study $^{22}\text{Ne}(\alpha,\text{n})^{25}\text{Mg}$

¹⁷O(p,γ)¹⁸F

Gesuè et al. PRL133 (2024)

see Riccardo Maria Gesuè poster

- 65 keV resonance direct measurement;
- 4π BGO detector, $Ta_2^{17}O_5$ enriched targets;
- passive (10 cm of lead + 4 cm of BPE) and active shielding (γ-ray coincidence); Skowronski et al. J. Phys. G 50, 045201 (2023)
- 400 C (1 month of continuous beam operation) and about 100 counts.

$$\omega \gamma = (34^{7sta}_{3sys}) \, peV$$

¹⁶**Ο(p**,γ**)**¹⁷**F**

Prompt gamma detection setup

- Prompt Gamma HPGe at 55°, CeBr₃ scintillators at 0° and 90°
- Activation Segmented BGO with nearly 4π coverage
- Both setups enclosed within thick lead shielding
- Ta₂O₅ targets, natural

¹⁶**Ο(p**,γ**)**¹⁷**F**

Study of the ¹⁴N(p, γ)¹⁵O reaction

see Giulia Gosta poster

Solid Targets

TiN sputtered targets (70 – 140 nm)+ Ti inter-layer + Ta backing produced @ LNL

4 cm

every day we performed a scan of the 278 keV resonance to monitor target stability

Detectors

4π -BGO + 10 cm-thick lead shielding all around

Study of the ¹⁴N(p, γ)¹⁵O reaction

16/09/2024

NPA XI - Dresden, 15-20 Sep. 2024

11

15O

Analysis procedure: add-back spectrum

The energy of all events in time coincidence in any of the 6 BGO segments is summed

 23 Na(p, α) 20 Ne

ERC-ELDAR

burning questions on the origin of Elements in the Lives and Deaths of stARts PI Carlo Bruno – University of Edinburgh

16/09/2024

20,22 Ne (p, γ) 21,23 Na at LUNA400

- We have directly measured several low energy state belonging to ${}^{22}Ne(p,\gamma){}^{23}Na$, ${}^{20}Ne(p,\gamma){}^{23}Na$ and ²¹Ne(p, γ)²²Na;
- Using gas target, lead shielding, BGO and HPGe
- PRL 121(2018)172701 BGO We reduced the rate uncertainties enormously improving the knowledge of the NeNa cycle

(**p**,γ)

(p,α)

NeNa cycle

MgAI cycle

(**b**;<u></u>)

(p,)

290

¹⁴N(p,γ)¹⁵O @IBF-LNGS

- Transition to the 6.79 MeV excited state of ¹⁵O: A lot of consistent measurements in the low energy region
- Transition to the ground state of ¹⁵O: Very difficult to reconcile all the measurements in a consistent picture.
- The transition to the 6.79 MeV excited state of ¹⁵O and to the ground state are fairly well know but effected to problems with their extrapolations at low energies
- Lack of recent data for the other transitions R/DC \rightarrow 6.17, 5.24, 5.18 ...

¹⁴N(p,γ)¹⁵O @IBF-LNGS

- Single HPGe at 55° in close geometry, excitation function (June 2023)
- Three HPGe detectors, angular distribution 55°-135°-90° + 0°-120°-90°
 (Oct. 2023 - under progress)
- Sputtered TaN targets: Produced at LNL. Enriched (99.95%) nitrogen gas. Tested for stability up to 40 C. Characterization via RBS and on-site using 278 keV ¹⁴N+p resonance scans
- Implanted targets: Produced at IST, Lisbon. Tested for stability up to 15 C

R matrix courtesy of R. J. deBoer, University of Notre Dame/JINA

see Thomas Chillery and Daniela Mercogliano posters

- Capabilities on surface exhausted (20+ years since last data)
- Current lowest data 2 reactions/minute
- Covered one resonance close to Gamow
- Many states that can contribute

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶

18

4) Q (3

- 300 keV of upper limits...
- We can measure 1-2 reaction/hour

see Thomas Chillery and Daniela Mercogliano posters

22 Ne(α , n) 25 Mg

- ERC-SHADES Scintillator-³He Array for Deep underground Experiments on the S-process (PI Andreas Best, Università di Napoli "Federico")
- ³He counter-EJ-309 liquid scintillator array suppression possible BIB
- High purity recirculated ²²Ne gas target

 > Al sealing, scrubber, Ta coated surfaces,
 Si industry grade pumps, enriched ²²Ne

$^{22}Ne(\alpha, n)^{25}Mg$

see Thomas Chillery and Daniela Mercogliano posters

- Array intrinsic background characterization completed Ananna et al. 2024 NIM A 1060, 169036
- Array energy calibration performed at Frankfurt University in 2023
- Gas target characterization completed, under analysis
- Data taking Oct-Nov 2024, Feb 2025

The ¹²C+¹²C state of the art

see Riccardo Gesuè and Steffen Turkat posters

- Several datasets and models
- Direct measurements above 2.1 MeV (large scattering, large uncertainties)
- Only indirect measurements below 2.1 MeV (problems with normalization and other discrepancies)
- Very large uncertainty below 2.5 MeV
- Presence of several states at low energies

The ¹²C+¹²C study via γ detection

$^{12}C+^{12}C \rightarrow ^{20}Ne + \alpha$ Q = 4.62 MeV

 γ -rays and α particles energies for excited states for ¹²C(¹²C, α)²⁰Ne (Q = 4.617 MeV)

E _x (MeV)	Jb	Mainγtran (Me\	isitions /)	ID	E _{α-max} (MeV) (E ^{CM} = 2 MeV)
0.0	0+			α_0	8.6
1.63	2+	1.63 →0 1.63		α_1	6.8

 $^{12}C+^{12}C \rightarrow ^{23}Na + p$ Q = 2.24 MeV

 γ -rays and p particles energies for excited states for ¹²C(¹²C, p)²³Na (Q = 2.241 MeV)

E _x (MeV)	q	Main γ transitions (MeV)		ID	E _{p-max} (MeV) (E ^{CM} = 2 MeV)
0.0	3/2+			p ₀	5.3
0.44	5/2+	0.44 → 0 0.44		p ₁	4.8

The ¹²C+¹²C preparation

Measurement performed with HPGe at 0° close geometry and NaI array for Compton suppression see Riccardo Gesuè and Steffen Turkat posters

Preliminary targets stability tests performed in the Felsenkeller laboratory in Dresden Graphite, HPGO – cooling system, expected temperature (thermometric, thermic calculations)

The ¹²C+¹²C preparation

see Riccardo Gesuè and Steffen Turkat posters

Front sides ector side Connector side Cylinder A Connector side Cylinder A

HPGe and Nal scintillator detectors intrinsic background and efficiency tests just performed at LNGS. Data analysis ongoing.

The ¹²C+¹²C preparation

- Setup design completed, parts procured. Now under installation on surface in LNGS for testing.
- First beam for further target tests planned for Dec 2024
- First half of 2025 devoted to setup mounting
- Second half 2025 devoted to first data taking

Outlooks

LUNA 400 future program

- ¹⁰B(α,p)¹³C ¹⁰B(α,d)¹²C ¹⁰B(α,n)¹³N whole 2025
 ERC-NUCLEAR NUclear Clustering Effects in Astrophysical Reaction PI Marialuisa Aliotta, University of Edinburgh
- ¹⁹F(p,g)²⁰Ne first half of 2025
- ${}^{24}Mg(p,g){}^{25}Al second half of 2025$

LUNA MV future program at IBF (under PAC revision)

- ${}^{12}C+{}^{12}C whole 2025$
- ${}^{22}Ne(\alpha,\gamma){}^{26}Mg$ second half of 2025

For providing slides for this presentation <u>a special thanks</u> to Lucia Barbieri, Andreas Best, Giovanni Ciani, Alessandro Compagnucci, Rosanna Depalo, Riccardo Maria Gesuè, Giulia Gosta, Gianluca Imbriani

Thank you for your attention

A. Compagnucci*, T. Chillery, F. Ferraro, R. M. Gesuè* , M. Junker

Laboratori Nazionali del Gran Sasso, INFN, ASSERGI, Italy/*GSSI, L'AQUILA, Italy

F. Barile, G.F. Ciani, V. Paticchio, L. Schiavulli

Università degli Studi di Bari and INFN, BARI, Italy

M. Lugaro

Konkoly Observatory, Hungarian Academy of Sciences, BUDAPEST, Hungary

L. Csedreki, Z. Elekes, Zs. Fülöp, Gy. Gyürky, T. Szücs

Institute of Nuclear Research (ATOMKI), DEBRECEN, Hungary

D. Bemmerer, A. Boeltzig, E. Masha

Helmholtz-Zentrum Dresden-Rossendorf, DRESDEN, Germany

M. Aliotta, L. Barbieri, C.G. Bruno, T. Davinson, J. Marsh, R.S. Sidhu, D. Robb University of Edinburgh, EDINBURGH, United Kingdom

P. Corvisiero, P. Prati, S. Zavatarelli

Università degli Studi di Genova and INFN, GENOVA, Italy

R. Depalo, A. Guglielmetti, G. Gosta

Università degli Studi di Milano and INFN, MILANO, Italy

A. Best, D. Dell'Aquila, A. Di Leva, G. Imbriani, D. Mercogliano, D. Rapagnani **Università degli Studi di Napoli and INFN, NAPOLI, Italy**

C. Broggini, A. Caciolli, P. Marigo, R. Menegazzo, D. Piatti, J. Skowronski, S. Turkat Università degli Studi di Padova and INFN, PADOVA, Italy

V. Rigato

Laboratori Nazionali di Legnaro, Italy

A. Formicola, C. Gustavino, O. Straniero*

INFN Roma, ROMA, Italy, *Osservatorio Astronomico di Collurania, TERAMO

F. Cavanna, P. Colombetti, G. Gervino

Università di Torino and INFN, TORINO, Italy

16/09/2024

