

R-process in neutron star mergers and supernovae

Almudena Arcones

Rapid neutron capture process

- solar system and kilonova

Origin of heavy elements?

Rapid neutron capture process Explosive and high neutron densities

Rare Supernovae

Neutron star mergers

Neutron-star merger simulation (S. Rosswog)

Observations and galactic chemical evolution

Evolution with time (or metallicity) -> Galactic Chemical Evolution (GCE) -> r-process sites: mergers vs. supernovae

Matteucci et al. MNRAS (2014), Côté et al. ApJ (2019), Molero et al. MNRAS (2021)

Observations and galactic chemical evolution

-> r-process sites: mergers vs. supernovae

Matteucci et al. MNRAS (2014), Côté et al. ApJ (2019), Molero et al. MNRAS (2021)

Neutron star mergers Equation of state Neutrinos Long-time simulations Supernovae

Neutron star mergers Equation of state Neutrinos Long-time simulations Supernovae

WinNet

https://github.com/nuc-astro Reichert et al. 2023

Supernova nucleosynthesis

Explosive nucleosynthesis: O, Mg, Si, S, Ca, Ti, Fe shock wave heats falling matter

neutrino-driven ejecta

Nuclear statistical equilibrium (NSE)

charged particle reactions a-process

r-process weak r-process

 νp -process

Supernova nucleosynthesis

Nuclear statistical equilibrium (NSE)

charged particle reactions a-process

Core-collapse supernova: weak r-process

Neutrino-driven supernovae: elements up to Ag

-
-
-
-
-
-
-
-
-

Nuclear physics uncertainty

Path close to stability:

- masses and beta decays known •
- beta decays slow •
- (α, n) reactions move matter to higher Z

time : 9.936e-03 s, T : 4.193e+00 GK, ρ : 2.481e+05 g/cm³

Independently vary each (α ,n) reaction rate between Fe and Rh by a random factor

Include theoretical and experimental uncertainties \rightarrow log-normal distributed rates ($\mu = 0, \sigma = 2.3$)

36 representative trajectories 10 000 Monte Carlo runs

Sensitivity study: key reactions

Key reactions \Rightarrow large correlation + significant impact on abundance for several astro conditions

Reaction	Ζ	MC tracers
59 Fe(α , n) 62 Ni	39 - 42, 45	34, 36
68 Fe(α , n) 71 Ni	36, 37	3
63 Co(α , n) 66 Cu	39-42, 45	20, 34, 36
71 Co(α , n) 74 Cu	36, 37	3
74 Ni(α , n) 77 Zn	36-42	2, 3, 17, 18, 32
76 Ni (α, n) 79 Zn	36–42	2, 3, 18, 32
67 Cu(α , n) 70 Ga	47	35
77 Cu(α , n) 80 Ga	37	3
72 Zn (α, n) 75 Ge	39–42	36
76 Zn (α, n) 79 Ge	36, 37–42	2, 3, 17, 18, 32
78 Zn(α , n) 81 Ge	36, 37–42	2, 3, 17, 18, 32
79 Zn (α, n) 82 Ge	36, 37–42	2, 3, 18, 32
80 Zn(α , n) 83 Ge	36, 37, 39–42	2, 3, 18, 32
81 Ga(α , n) 84 As	36, 38, 39, 41	17, 32
78 Ge $(\alpha, n)^{81}$ Se	39–42	36
80 Ge (α, n) 83 Se	36–39, 42	28, 33, 36
${}^{82}\text{Ge}(\alpha, n) {}^{85}\text{Se}$	36–39, 41	11, 17, 19, 27, 28, 33
83 As (α, n) 86 Br	36, 37, 41	11, 26, 27, 28, 33
84 Se (α, n) 87 Kr	36-42, 44, 45	2, 6, 7, 8, 9, 10, 11, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 36
85 Se (α, n) 88 Kr	36-42, 44, 45	2, 6, 7, 8, 9, 10, 11, 18, 19, 22, 23, 24, 26, 27, 28, 29, 30, 31
85 Br(α , n) 88 Rb	37–39	6, 7, 8, 9, 10, 22, 23, 24, 26, 28, 29, 30, 31
${}^{87}\mathrm{Br}(\alpha,n){}^{90}\mathrm{Rb}$	37, 39	6, 9, 10, 29, 31
${}^{88}\mathrm{Br}(\alpha,n){}^{91}\mathrm{Rb}$	39	26
${}^{86}\mathrm{Kr}(\alpha,n){}^{89}\mathrm{Sr}$	38-42, 44, 45, 47	4, 5, 7, 8, 13, 14, 15, 16, 20, 24, 25, 33, 34, 35

Comparison to observations

Abundance with uncertainties for several astro conditions \longrightarrow compare abundance ratios

Based on optical potentials from Mohr et al., ADNDT (2021)

Comparison to observations

Abundance with uncertainties for several astro conditions \longrightarrow compare abundance ratios

Based on optical potentials from Mohr et al., ADNDT (2021)

What has been measured so far?

- 86 Kr(α , n), 96 Zr(α , n) and 100 Mo(α , n) at ATOMKI G.G. Kiss et al., Astrophys. J 908, 202 (2021) • T.N. Szegedi et al., Phys. Rev. C 104, 035804 (2021)
- ${}^{75}\text{Ga}(\alpha, n), {}^{85,86}\text{Kr}(\alpha, xn), {}^{85}\text{Br}(\alpha, xn)$ at NSCL/FRIB (HabaNERO/SECAR) F. Montes, J. Pereira et al.
- 86 Kr(α , xn), 87 Rb(α , xn), 88 Sr(α , xn), 100 Mo(α , xn) at Argonne (MUSIC) M. L. Avila, C. Fougères et al. W. J. Ong et al., Phys. Rev. C 105, 055803 (2022)
- 86 Kr(α , n) and 94 Sr(α , n) at TRIUMF (EMMA) C. Aa. Diget, A. M. Laird, M. Williams et al. C. Angus et al., EPJ Web of Conferences, NPA-X (2023)

György Gyürky Poster: Sándor Kovács

- Neutrino-driven supernovae: elements up to Ag
- Magneto-rotational supernovae: elements up to U and Th?

Ag to U and Th?

- Neutrino-driven supernovae: elements up to Ag
- Magneto-rotational supernovae: elements up to U and Th?

2D and 3D + parametric neutrino treatment Winteler et al. 2012, Nishimura et al. 2015, 2017, Mösta et al. 2018

Neutron-rich matter ejected by magnetic field (Cameron 2003, Nishimura et al. 2006)

- Neutrino-driven supernovae: elements up to Ag
- Magneto-rotational supernovae: elements up to U and Th?

Neutron-rich matter ejected by magnetic field (Cameron 2003, Nishimura et al. 2006) 2D and 3D + parametric neutrino treatment Winteler et al. 2012, Nishimura et al. 2015, 2017, Mösta et al. 2018

First simulations of explosions with magnetic fields and detailed neutrino transport (Obergaulinger & Aloy 2017), and their nucleosynthesis (Reichert et al. ApJ 2021, Reichert et al. MNRAS 2023)

- Neutrino-driven supernovae: elements up to Ag
- Magneto-rotational supernovae: elements up to U and Th?

Open questions

- Long-time evolution: Magnetar (neutron star) vs. Collapsar (black hole): r-process possible?
- Impact of magnetic field strength and morphology on nucleosynthesis

Reichert et al. MNRAS (2024)

- Neutron-rich matter ejected by magnetic field (Cameron 2003, Nishimura et al. 2006) 2D and 3D + parametric neutrino treatment
- Winteler et al. 2012, Nishimura et al. 2015, 2017, Mösta et al. 2018
- First simulations of explosions with magnetic fields and detailed neutrino transport (Obergaulinger & Aloy 2017), and their nucleosynthesis (Reichert et al. ApJ 2021, Reichert et al. MNRAS 2023)

Neutron star mergers Equation of state Neutrinos Long-time simulations Supernovae

Core-collapse supernova yields for galactic chemical evolution (GCE)

Reduced alpha-network within simulations (Navó et al. 2023)

Equation of state in core-collapse supernovae

First systematic study of nuclear matter properties 1D simulations, FLASH + M1 + increased neutrino heating

Yasin et al., PRL (2020)

Equation of state in core-collapse supernovae

First systematic study of nuclear matter properties 1D simulations, FLASH + M1 + increased neutrino heating

Yasin et al., PRL (2020)

Effective mass: PNS contraction

Equation of state in core-collapse supernovae

First systematic study of nuclear matter properties 1D simulations, FLASH + M1 + increased neutrino heating

Yasin et al., PRL (2020)

Effective mass: **PNS** contraction

dynamics, gravitational waves, mass ejected (Jacobi et al., MNRAS 2024) nucleosynthesis and kilonova (Ricigliano et al., MNRAS 2024)

Lombardo F

Mergers and supernovae as cosmic laboratories establish the origin and history of heavy elements in the universe

