INTERFEROMETRIC GRAVITATIONAL WAVE DETECTION – A (QUANTUM) METROLOGICAL CHALLENGE

Nuclear Physics in Astrophysics XI 2024, Dresden

Michèle Heurs, Leibniz Universität Hannover and DZA, Germany

OF

LIGO Scientific Collaboration

THE ELECTROMAGNETIC SPECTRUM

Das für den Menschen sichtbare Spektrum (Licht)

Photo: © Copyright Steinway & Sons

PROPAGATION OF GWS THROUGH SPACETIME

https://www.youtube.com/watch?v=F4stTzxYrNo

SIMPLIFIED OPTICAL SETUP OF ADVANCED LIGO

TWO BLACK HOLES BECOME ONE

TWO NEUTRON STARS MERGE

Credit: NASA's Goddard Space Flight Center/CI Lab

OBSERVATION RUNS AND RANGES

[Source: https://dcc.ligo.org/LIGO-G2002127/public]

OBSERVATION RANGE

iLIGO Range **Radius: 15 Mpc**

Initial LIGO Range:

WHAT HAVE WE ALREADY LEARNED?

- First detection of GWs from a BBH system (GW150914)
 - Physics of BHs
- First detection of GWs from a BNS system (GW170817)
 - Birth of multimessenger astronomy with GWs
 - Constraining the equations of state of neutron stars
- Localisation capabilities of a GW source
- Measurement of the GW propagation speed
- Test of General Relativity
- Alternative measurement of the Hubble constant
- GW polarisations
- Intermediate mass black hole (GW190521)

THE GLOBAL GWD NETWORK (CURRENT STATUS, 2G)

ADVANCED TECHNOLOGY FOR aLIGO (EXAMPLES)

ERM ETM ITM: input test mass ETM: end test mass ERM: end reaction mass 4km i CP: compensation plate PRM: power recycling mirror phase modulator PRi: power recycling mirror I laser system Faraday T=3% ITM φ_m isolator CP PRM PR2 125 W input mode 4km BS ERM 5.2 kW cleaner 750 kW PR3 ITM ETM SR2 T=1.4% BS: 50/50 beam splitter High power ultrastable laser system SRM: signal recycling mirror SRM Advanced interferometer topologies SRi: signal recycling mirror i SR3 ϕ_m : phase modulator Suspended low thermal noise optics Faraday PD: photodetector isolator Non-classical light GW readout output [Image according to: The LIGO Scientific Collaboration, mode component library "Advanced LIGO", Class. Quantum Grav. 32 (2015)] cleaner

DESIGN SENSITIVITY OF aLIGO

[Image: R. X. Adhikari, Rev. Mod. Phys. 86, (2014)]

QUANTUM NOISE: HEISENBERG & CO.

IN UR QUANTUM BOX ...

THE STANDARD QUANTUM LIMIT (SQL) OF INTERFEROMETRY

GEO600: THE FIRST GWD TO USE SQUEEZED LIGHT (SINCE 2010!)!

[Nat. Phys. 7, 962–965 (2011)]

FIXED-QUADRATURE SQUEEZING AT adVIRGO

[The Virgo Collaboration & Mehmet et al. "Quantum Backaction on Kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector "Phys. Rev. Lett. **125**, 131101 (2020)]

FIXED-QUADRATURE SQUEEZING AT adVIRGO

[The Virgo Collaboration & Mehmet et al. "Quantum Backaction on Kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector "Phys. Rev. Lett. **125**, 131101 (2020)]

adVIRGO TEST MASS (42 kg, ϕ = 350 mm, D = 200 mm)

Figure 3. Input Payload, CAD drawing.

Figure 4. Input Payload during assembly (left) and its integration with SA (right).

[modified from: L. Naticchioni and on behalf of the Virgo Collaboration, J. Phys.: Conf. Ser. 957 012002 (2018)]

FREQUENCY-DEPENDENT SQUEEZING AT aLIGO (04)

D. Ganapathy et al. (The LIGO O4 Detector Collaboration), "Broadband Quantum Enhancement of the LIGO Detectors with Frequency-Dependent Squeezing", Phys. Rev. X 13, 041021 (2023)]

FREQUENCY-DEPENDENT SQUEEZING AT aLIGO (04)

LIGO Livingston

LIGO Hanford

D. Ganapathy et al. (The LIGO O4 Detector Collaboration), "Broadband Quantum Enhancement of the LIGO Detectors with Frequency-Dependent Squeezing", Phys. Rev. X 13, 041021 (2023)]

THE NEXT GENERATION

Sant

[Copyright © 2005 Paramount Pictures]

THE WORLDWIDE DETECTOR NETWORK OF THE FUTURE

LIGO India

LIGO Hanford CE (US) LIGO Livingston

Operational Under Construction Third generation

Gravitational Wave Observatories

SEQ600

LISA

SENSITIVITIES OF 3G GWDS

Sensitivity comparison of Advanced LIGO and Einstein Telescope (design)

[source: Einstein Telescope Design Report Update 2020]

Astrophysical reach for equal-mass, nonspinning binaries for Advanced LIGO, Einstein Telescope and Cosmic Explorer

[source: ET Design Report Update 2020, and references therein].

THE EINSTEIN TELESCOPE (ET)

- A **European** project!
- Triangular* underground GW observatory (at 200 300 m depth) with 10 km arm length

WHAT SCIENCE CAN WE DO WITH ET?

Astrophysics

- Black hole properties
 - origin (stellar vs. primordial)
 - evolution, demography
- Neutron star properties
 - interior structure (QCD at ultra-high densities, exotic states of matter)
 - demography
- Multi-messenger astronomy
 - joint GW/EM observations (GRB, kilonova,...)
 - multiband GW detection (LIS)
 - neutrinos
- "discovery Detection of ne sources
 - - c background of astrophysical

Fundamental physics and cosmology

- The nature of compact objects
- or General Relativity post-Newtonian expansient the unexpected trong-field reginexpect offer SO Tests of General Relativi
- - - clouds, DM accreting on compact objects
 - Park Energy and modifications of gravity on cosmological scales
 - DE equation of state
 - modified GW propagation
- Stochastic backgrounds of cosmological origin and connections with high-energy physics
 - inflation
 - phase transitions
 - cosmic strings

Einstein Telescope

"All" BBH back to Big Bang Nearly all BNS back to Big Bang Many supernovae View to the Dark Ages

[This list was taken verbatim from the talk by M. Maggiore at the 11th ET Symposium (2020)]

THE QUANTUM CONTROL GROUP ©

Pratik Chakraborty Bernd Schulte Dennis Wilken Lorenz Kies Manuel Schimanski Alex Wolf Mariia Matiushechkina Lea Richtmann Tim Bartelsmeier Kirstin Tews M.H. Imke Niehoff Frauke Berger Roman Kossak

◀ 101 - 107, 126 u. 134

Nived Johny

28