

Unraveling the mysteries of Carbon-Enriched Metal-Poor (CEMP) stars

Sophie Van Eck Riano Giribaldi Arthur Choplin

Thibault Merle Lionel Siess

Drisya Karinkuzhi Alain Jorissen Stéphane Goriely Adrian Lambotte

CEMP classification (Carbon-Enriched Metal-Poor)

Classification based on carbon...

Different definitions:

- [C/Fe]>1 (Beers & Christlieb 2005)
- [C/Fe]>0.7 if log L/Lsun<2.3
 [C/Fe]=3-log(L/Lsun)
 if log L>2.3 (Aoki+2007)

... and on heavy elements : Ba, (La), Eu

Table	1
CEMP Subclass	Definitions

Subclasses	Definition
CEMP	[C/Fe] > +0.7
CEMP-r	[C/Fe] > +0.7, $[Eu/Fe] > +0.7$, $[Ba/Eu] < 0.0$
CEMP-s	[C/Fe] > +0.7, $[Ba/Fe] > +1.0$, $[Ba/Eu] > +0.5$
CEMP- i (r/s)	[C/Fe] > +0.7, 0.0 < [Ba/Eu] < +0.5 or
	$[C/Fe] > +0.7, 0.0 \leq [La/Eu] \leq +0.6$
CEMP-no	[C/Fe] > +0.7, [Ba/Fe] < 0.0

Zepeda+ 2023

r-I:	0.3 < [Eu/Fe] <= 0.7 and [Ba/Eu]<0
r-II:	[Eu/Fe] > 0.7 and [Ba/Eu]<0
r-III:	[Eu/Fe] >2

Christlieb et al. 2004; Beers & Christlieb 2005; Holmbeck et al. 2020

N.B. Varying limits for external system. e.g. Sgr, Dra, Umi, Scl (Sestito+ 2024)

CEMP classification

Jeena+ 2023

CEMP classification

Impact of Non-LTE and 3D modelling on CEMP classification

Collet+ 2006; Amarsi+ 2019a,b; Norris & Yong 2019, Gallagher 2016

• Effect of **3D** on **CH G band**:

 $\Delta_{3D-1D} \approx -0.3$ dex for group II (=CEMP-no) No effect on Group I (=CEMP-s)

Impact of Non-LTE and 3D modelling on CEMP classification

Collet+ 2006; Amarsi+ 2019a,b; Norris & Yong 2019, Gallagher 2016

• Effect of **3D** on **CH G band**:

 $\Delta_{3D-1D} \approx -0.3$ dex for group II (=CEMP-no) No effect on Group I (=CEMP-s)

Barium abundances:

Anish Amarsi talk Jonas Klevas talk Steffen+ 2018

3D CO5BOLD models + **non-LTE** MULTI on **Ba lines** (M.Steffen poster) Largest corrections for giants at [M/H] = -1+0.25 $<\Delta_{3D} - \Delta_{1D} < +0.4$

- \rightarrow Higher 3D NLTE Ba abundances
 - CEMP-s classification safe
 - CEMP-no could turn to CEMP-s !

Carbon enrichment is ubiquitous (especially at low-Z)

Using this new definition:

- **CEMP** : [C/Fe]>0.7
- CEMP-s:
- CEMP-no:
- A(C)> 7.1 A(C)< 7.1
- □ Fraction of CEMP-no (among all stars) ↑ with decreasing metallicity, reaching 1 at [Fe/H]<-4</p>
- Fraction of CEMP-s: 10% (independent of metallicity)
- \Box CEMP-no dominate over CEMP-s below [Fe/H]=-2.3:

Transition between:

FIMF (First Initial Mass Function, more massive stars)

and IMF (low and intermediate-mass stars)

(d) Differential frequencies of the CEMP-no and CEMP-s stars.

Yoon + 2018

Lee+ 2013; Placco+ 2014; Yoon+ 2018, Arentsen+ 2021

Carbonicity galactic map for CEMP-no and -s

 CEMP-s: predominantly metal-weak thick disk (TDR) and inner-halo regions (IHR)

CEMP-r

Possible interpretations:

- r-process elements are wellmixed into the interstellar medium after production
- Or: whatever the site, the rprocess is uniform
- Or: a unique site is responsible for the r-process

Cowan+ 2021

CEMP-r

Possible r-process sites:

- □ Neutron star mergers
- Neutron-star BH mergers
- □ Collapsars (fast rotating massive stars → SNe)
- Magneto-rotational core-collapse supernovae (MR-SNe)
- Quark deconfinement SNe
- Neutrino-driven winds in CCSN

See posters by L. Lombardo T. Mishenina M. Racca V. Placco

CEMP-r: 32 < *Z* < 56

r-process: universal...

... or not so? "truncated" "incomplete" "limited" r-process

CEMP-r: 32 < *Z* < 56

r-process: universal...

... or not so? "truncated" "incomplete" "limited" r-process

Truncated-r stars:

- Present more often disk-like kinematics than r-l and r-ll stars
- Appear to belong to the MW thick disk more often than r-l and r-ll
- □ Are on prograde orbits
- \rightarrow Born in-situ (in the MW)

Xylakis-Dornbusch + 2024 Roederer+ 2018 Gudin+ 2021 Shank+ 2023

r-I and r-II stars:

 accreted by the MW from ultrafaint dwarf galaxies

CEMP-r: $Z \ge 90$

r-process: universal...

... or not so? "actinide-boost" stars

30% of CEMP-r

Cowan+ 2021

CEMP-r: U-Th cosmochronometry

To be updated (talk by T. Hansen)

The 8 stars with Th and U abundance measurements

2MASS J22132050-5137385	Roederer+ 2024	13.6 ± 2.6 Gyr
SMSS J200322.54-114203.3	Yong+ 2021	-
2MASS J09544277+5246414	Holmbeck+ 2018	13.0 ± 4.7 Gyr
RAVE J203843.2-002333	Placco+ 2017	13.0 ± 1.1 Gyr
CS 29497-004	Hill+ 2017	13.7 ± 4.4 Gyr
HE 1523-0901	Frebel+ 2007	13.2 Gyr
BD +17°3248	Cowan+ 2002	13.8 ± 4 Gyr
CS 31082-001	Cayrel+ 2001, Hill+ 2002	14.0 ± 2.4 Gyr
Solar system	Connelly+ 2017	4.56730 ± 0.00016 Gyr

CEMP-r

 Binary frequency 18±6% (Hansen+ 2015), similar to the one of normal metal-poor field giants (16±4%, Carney+ 2003)

CEMP-r	CEMP-no
 Binary frequency 18±6% (Hansen+ 2015), similar to the one of normal metal-poor field giants (16±4%, Carney+ 2003) 	 Binary frequency 32 ± 10% Arentsen+ 2019 See also Starkenburg 2014; Hansen 2016b

CEMP-r	CEMP-no
 Binary frequency 18±6% (Hansen+ 2015), similar to the one of normal metal-poor field giants (16±4%, Carney+ 2003) 	 Binary frequency 32 ± 10% Arentsen+ 2019 See also Starkenburg 2014; Hansen 2016b

CEMP-s

Compatible with 100% binaries
 Lucatello+ 2005, Starkenburg+ 2014,
 Hansen+ 2016, Jorissen, Van Eck+ 2016, Arentsen+ 2019

CEMP-r	CEMP-no
 Binary frequency 18±6% (Hansen+ 2015), similar to the one of normal metal-poor field giants (16±4%, Carney+ 2003) 	 Binary frequency 32 ± 10% Arentsen+ 2019 See also Starkenburg 2014; Hansen 2016b

CEMP-s	CEMP-rs
 Compatible with 100% binaries Lucatello+ 2005, Starkenburg+ 2014, Hansen+ 2016, Jorissen, Van Eck+ 2016, Arentsen+ 2019 	 More binaries than among CEMP-s Hansen T.T. + 2016 Karinkuzhi, Van Eck+ 2021

CEMP stars: binarity & scenarii

CEMP-r	CEMP-no
→fossile record from a C- and r-enriched ISM Or Stars polluted by nearby C and r-process source	→fossile record from a C-enriched ISM Or Stars polluted by nearby C source

CEMP-s	CEMP-rs
→Polluted by an AGB companion	→Polluted by an AGB companion (+ by a possible other source ?)

CEMP-no stars: binarity & scenarii: not so clear

- High-C CEMP-no have a large binary fraction (47%)
- → Polluted binaries?
- Low-C CEMP-no have a smaller binary rate (18%) similar to the one of CEMP-r
 - binary stars form more easily in a carbonenhanced environment?

Or:

they have been polluted with C-rich, s-normal material ejected from a nearby AGB?

Hansen T.T., 2016; Arentsen+ 2018, 2019

Scenario for CEMP-s

Members of a large famous family: the extrinsics

Low-metallicity counterparts of:

- □ Extrinsic S stars (-0.5<[Fe/H]<0)
- Barium stars (-0.5<[Fe/H]<0)</p>
- □ CH stars (-1<[Fe/H]<-0.5)
- All binaries
- □ WD companion:
 - direct detections in a few instances
 - Mass distribution of the companions compatible with WD

CEMP-rs and -s: Zr/Nb anti-correlation

Scenarios for CEMP-rs

Double event (r+s):
 Interstellar (r)
 or
 Kilonova (r)

Gull+ 2018; see however

Choplin+ 2022

• i-process in a single astrophysical site

Proton injection event (Hampel+ 2019; Karinkuzhi+ 2021; Choplin+ 2021)

Favoured in Mashonkina+ 2023, Karinkuzhi+ 2023

He shell flash of rapidly accreting WD (Denissenkov+ 2016)

Abundance profiles

Abundance ratio : C.J. Hansen et al. A&A 623, A128 (2019)

Abundance profiles

Abundance profiles

r,i and s-processes predict distinct isotopic mixtures

Choplin, Siess & Goriely 2021

Martinet, Choplin+ 2024

- Isotopic shifts are too tiny to be detected
- But hyperfine splitting is not!

- Isotopic shifts are too tiny to be detected
- But hyperfine splitting is not!

Subordinate lines:

Giribaldi+, in prep.

Resonance lines:

Problem: Abundance offset between resonance and subordinate lines (0.7 dex higher)

Hypothesis: A(Ba)=A(Ce)

Giribaldi+, in prep.

CEMP-rs classification attempts: Ba isotopic ratio

In conclusion: diamonds in large homogeneous surveys

[Ce/Fe] from Gaia RVS spectra (Contursi+ 23)

Kiel diagram for 28 613 stars with the recommended flag selection

In conclusion: diamonds in large homogeneous surveys

