

Roberta Spartà

Trojan Horse Method for nuclear astrophysics

Why we need the indirect methods?

Problems of cross sections measurements at energies of interest for astro \rightarrow LOW (keV)! While CB~MeV

reactions occur through <u>TUNNEL EFFECT</u> tunneling probability $P \propto \exp(-2\pi\eta)$

Direct measurements with high S/N

Increase the number of detected particles

- (4 π detectors or new accelerators with high intensity beam)
- Reduce the background
- (underground physics or Recoil Mass Separator)

Few events... + **electron screening** cannot be avoided!

[Aliotta et al 2001] *#oldbutgold*

Plasma screening ≠ Lab screening

Then... indirect methods!

NEW METHODS ARE NECESSARY

- to measure cross sections at never reached energies

- to retrieve information on electron screening effect when ultra-low energy measurements are available

INDIRECT METHODS ARE NEEDED

complementary to the direct ones

THM description: overcoming the CB

Main idea: to get the 2-body reaction σ selecting the quasi-free mechanism from the σ of a properly chosen 3-body reaction

x+B→C+D

The binary reaction of interest A+B→C+D+S The 3-body reaction you perform in the lab

A is the Trojan Horse nucleus

x+S

THM description: overcoming the CB

E_A > (E_{AB})_{Coulomb Barrier}

The nucleus A can be brought into nuclear field of nucleus B and the cluster x induces the reaction $x + B \rightarrow C + D$

Trojan Horse nucleus A S X B-A Coulomb Barrier B- x two body process Nuclear "city walls"

Coulomb effects and electron screening are negligible

THM description: going to low energies

Beyond the walls!

But now... at which energy the 2-body reaction takes place? (remember: very low energies for astrophysical interest)

 $E_{qf} = E_{xB} - B_{x-S} = E_{cD} - Q_{2b}$

 E_{xB} is the beam energy in the center of mass of the two body reaction

 B_{x-S} binding energy of the two clusters inside the Trojan Horse

plays a key role in compensating for the beam energy

under proper kinematical conditions

THM description: QF mechanism

THM description: PWIA

Coulomb effects and electron screening are negligible

Experiments+theory

 $E_{qf} \sim C$

THM description: direct-indirect $\boldsymbol{\sigma}$

THM no absolute cross section \rightarrow Normalization to direct measurements at higher energies

(main validity test)

Excitation function

ABOVE COULOMB BARRIER

BELOW COULOMB BARRIER

THM description: direct-indirect σ

THM for NA - Roberta Spartà

THM description: measurements

	Indirect reaction	Direct reaction	References				
[1]	2 H(⁷ Li, $\alpha\alpha$)n	${}^{1}\mathrm{H}({}^{7}\mathrm{Li}, \alpha){}^{4}\mathrm{He}$	Spitaleri et al 1999, Lattuada et al 2001 [193]				
[2]	3 He(7 Li, $\alpha\alpha$)d	2 H(⁷ Li, α) ⁴ He	Tumino et al 2006 [194]				
[3]	2 H(⁶ Li, α^{3} He)n	${}^{1}\mathrm{H}({}^{6}\mathrm{Li},\alpha){}^{3}\mathrm{He}$	Tumino 2003 [84]				
[4]	6 Li(6 Li, $\alpha \alpha$) 4 He	$^{2}\mathrm{H}(^{6}\mathrm{Li}, \alpha)^{4}\mathrm{He}$	Spitaleri et al 2001 [18]				
[5]	${}^{2}\mathrm{H}({}^{9}\mathrm{Be}, \alpha^{6}\mathrm{Li})\mathrm{n}$	$^{1}\mathrm{H}(^{9}\mathrm{Be},\alpha)^{6}\mathrm{Li}$	Wen et al 2008 [195]				
[6]	$^{2}\mathrm{H}(^{10}\mathrm{B}, \alpha^{7}\mathrm{Be})\mathrm{n}$	$^{1}\mathrm{H}(^{10}\mathrm{B},\alpha)^{7}\mathrm{Be}$	Lamia et al 2008, Rapisarda et al 2018, Cvetinovic et al 2018 [196, 197, 198]				
[7]	${}^{2}\mathrm{H}({}^{11}\mathrm{B}, \alpha_{0}{}^{8}\mathrm{Be})\mathrm{n}$	$^{1}\mathrm{H}(^{11}\mathrm{B},\alpha)^{8}\mathrm{Be}$	Spitaleri et al 2004,Lamia et al 2011 [199, 200]				
[8]	$^{2}{\rm H}(^{15}{\rm N}, \alpha^{12}{\rm C}){\rm n}$	${}^{1}\mathrm{H}({}^{15}\mathrm{N},\alpha){}^{12}\mathrm{C}$	La Cognata et al 2007 [201]				
[9]	${}^{2}\mathrm{H}({}^{18}\mathrm{O},^{15}\mathrm{N})\mathrm{n}$	$^1\mathrm{H}(^{18}\mathrm{O},\alpha)^{15}\mathrm{N}$	La Cognata et al 2009 [202]				
[10]	$^{2}\mathrm{H}(^{17}\mathrm{O},\alpha^{14}\mathrm{N})\mathrm{n}$	$^1\mathrm{H}(^{17}\mathrm{O},\alpha)^{14}\mathrm{N}$	Sergi et al 2010, Sergi et al. 2015 [85, 86]				
[11]	$^{6}\mathrm{Li}(^{3}\mathrm{He},\mathrm{p}^{4}\mathrm{He})^{4}\mathrm{He}$	$^{2}\mathrm{H}(^{3}\mathrm{He},\mathrm{p})^{4}\mathrm{He}$	La Cognata et al 2005 [203]				
[12]	$^2\mathrm{H}(^6\mathrm{Li},\mathrm{p}^3\mathrm{H})^4\mathrm{He}$	$^{2}\mathrm{H}(\mathrm{d},\mathrm{p})^{3}\mathrm{H}$	Rinollo et al 2005 [204]				
[13]	$^6\mathrm{Li}(^{12}\mathrm{C},\alpha^{12}\mathrm{C})^2\mathrm{H}$	${}^{4}\mathrm{He}({}^{12}\mathrm{C},{}^{12}\mathrm{C}){}^{4}\mathrm{He}$	Spitaleri et al 2000 [205]				
[14]	$^2\mathrm{H}(^6\mathrm{Li},\mathrm{t}^4\mathrm{He})^1\mathrm{H}$	$n(^{6}\mathrm{Li},t)^{4}\mathrm{He}$	Tumino et al 2005, Gulino et al 2010 [206, 207]				
[15]	$^{2}\mathrm{H}(\mathrm{p},\mathrm{pp})\mathrm{n}$	$^{1}\mathrm{H}(\mathrm{p},\mathrm{p})^{1}\mathrm{H}$	Tumino et al 2007, Tumino et al 2008 [208, 209]				
[16]	$^{2}\mathrm{H}(^{3}\mathrm{He},\mathrm{p}^{3}\mathrm{H})^{1}\mathrm{H}$	$^{2}\mathrm{H}(^{2}\mathrm{H,p})^{3}\mathrm{H}$	Tumino et al 2011, Tumino et al 2014 [94, 89]				
[17]	$^2\mathrm{H}(^3\mathrm{He},n^3\mathrm{He})^1\mathrm{H}$	$^{2}\mathrm{H}(^{2}\mathrm{H},n)^{3}\mathrm{He}$	Tumino et al 2011, Tumino et al 2014 [94, 89]				
[18]	$^{2}{\rm H}(^{19}{\rm F},\alpha^{16}{\rm O}){\rm n}$	$^1\mathrm{H}(^{19}\mathrm{F},\alpha)^{16}\mathrm{O}$	La Cognata et al 2011, Indelicato et al 2017 [28, 139]				
[19]	${\rm ^{13}C}({\rm ^6Li},n{\rm ^{16}O}){\rm ^2H}$	${}^{13}\mathrm{C}(\alpha,n){}^{16}\mathrm{O}$	La Cognata et al 2014 [210]				
[20]	$^2\mathrm{H}(^{18}\mathrm{F},\alpha^{15}\mathrm{O})\mathrm{n}$	$^1\mathrm{H}(^{18}\mathrm{F},\alpha)^{15}\mathrm{O}$	Cherubini et al 2015, Pizzone et al. 2016, La Cognata et al., 2017 [211, 212, 213]				
[21]	$^2\mathrm{H}(^{10}\mathrm{B},\alpha^7\mathrm{Li})^1\mathrm{H}$	$n(^{10}\mathrm{B},\alpha)^{7}\mathrm{Li}$	Guardo et al 2019, Sparta et al 2021 [214, 215]				
[22]	$^{2}\mathrm{H}(^{7}\mathrm{Be},\alpha\alpha)^{1}\mathrm{H}$	$n(^7\mathrm{Be},\alpha)^4\mathrm{He}$	Lamia et al 2017, Lamia et al 2019, Hayakawa et al 2021 [106, 108, 110]				
[23]	${\rm ^{12}C(^{14}N,\alpha^{20}Ne)^{2}H}$	${\rm ^{12}C(^{12}C,\alpha)^{20}Ne}$	Tumino et al 2018 [26]				
[24]	${\rm ^{12}C(^{14}N,p^{23}Na)^{2}H}$	${\rm ^{12}C(^{12}C,p)^{23}Na}$	Tumino et al 2018 [26]				
[25]	${}^{6}\mathrm{Li}({}^{19}\mathrm{F}, p{}^{22}\mathrm{Ne}){}^{2}\mathrm{H}$	${}^{4}\mathrm{He}({}^{19}\mathrm{F},p){}^{22}\mathrm{Ne}$	Pizzone et al 2017, Dagata et al 2018 [212, 216]				
[26]	${}^{2}\mathrm{H}({}^{17}\mathrm{O},^{14}\mathrm{C}){}^{1}\mathrm{H}$	${\rm ^{17}O}(n,\alpha){\rm ^{14}C}$	Oliva et al 2020 [217]				
[27]	$^{2}\mathrm{H}(^{3}\mathrm{He},pt)^{1}\mathrm{H}$	${}^{3}\mathrm{He}(n,p){}^{3}\mathrm{H}$	Pizzone et al 2021 [218]				
[28]	$^{2}\mathrm{H}(^{7}\mathrm{Be},p^{7}\mathrm{Li})^{1}\mathrm{H}$	$n(^7\mathrm{Be},p)^7\mathrm{Li}$	Hayakawa et al 2021 [110]				
[29]	$^2\mathrm{H}(^{27}\mathrm{Al},\alpha^{24}\mathrm{Mg})n$	$^{27}\mathrm{Al}(p,\alpha)^{24}\mathrm{Mg}$	Palmerini et al 2021, La Cognata et al. 2022 [137, 135, 136]				

Indirect Methods with Transfer Reactions: the Trojan Horse Method and the Asymptotic Normalization Coefficient

 – coming soon on Progress on Particle and Nuclear Physics

0) Which reaction? Where is the problem?

Big Bang Nucleosynthesis (BBN) or Primordial Nucleosynthesis

great success of NA: good agreement + small problems (CLiP + D-tension)

$$\begin{split} &\frac{^{7}\mathrm{Li}}{\mathrm{H}} = 4.702 \times 10^{-10} \bigg(\frac{\eta_{10}}{6.129}\bigg)^{2.094} \bigg(\frac{N_{\nu}}{3.0}\bigg)^{-0.280} \bigg(\frac{G_{N}}{G_{N,0}}\bigg)^{-0.719} \bigg(\frac{\tau_{n}}{879.4s}\bigg)^{0.434} \\ &\times [p(n,\gamma)d]^{1.323} \left[d(d,n)^{3}\mathrm{He}\right]^{0.696} \left[d(d,p)t\right]^{0.064} \\ &\times \left[d(p,\gamma)^{3}\mathrm{He}\right]^{0.589} \left[^{3}\mathrm{He}(n,p)t\right]^{-0.267} \left[^{3}\mathrm{He}(d,p)^{4}\mathrm{He}\right]^{-0.754} \left[t(d,n)^{4}\mathrm{He}\right]^{-0.023} \\ &\times \left[^{3}\mathrm{He}(\alpha,\gamma)^{7}\mathrm{Be}\right]^{0.964} \left[^{7}\mathrm{Be}(n,p)^{7}\mathrm{Li}\right]^{-0.707} \left[^{7}\mathrm{Li}(p,\alpha)^{4}\mathrm{He}\right]^{-0.055} \left[t(\alpha,\gamma)^{7}\mathrm{Li}\right]^{0.029} \\ &\times \left[^{7}\mathrm{Be}(n,\alpha)^{4}\mathrm{He}\right]^{-0.001} \left[^{7}\mathrm{Be}(d,p)^{4}\mathrm{He}^{4}\mathrm{He}\right]^{-0.008} \end{split}$$

State of the art for d+d before our measurement

Energies relevant for the BBN scenario (50-350 keV) \rightarrow 0-1 MeV But CB ~200-400 keV Thus we need:

- Bare nucleus cross section
- Errors reduction

- 1) Choose the proper 3-body reaction to measure in the lab,
- 2) find a suitable TH nucleus (clusters!),
- 3) find set-up that maximize the QF contribution (easy set-up)

Pole invariance

This resembles previous results obtained for ${}^{7}Li(p,\alpha)\alpha$ [Pizzone+ 2011] and ${}^{6}Li(d,\alpha)\alpha$ [Tumino+ 2006]

[Tumino+ 2014]: red triangles [Rinollo+ 2005]: black dots

³He is the new TH nucleus

³He=d+p

Experimental angles are chosen to maximize <u>QF contribution</u> Maximum contribution $p_{spec} = 0 \text{ MeV/c}$ (Eckart function for ³He)

@Nuclear Physics Institute of ASCR (Prague) Cyclotron \rightarrow ³He beam (18 MeV, *i*=1.5 pnA) impinging on a CD₂ target (150 µg/cm²)

Offline data analysis: Select the 3-body reaction of interest among the ones occurring in the target

QF mechanism selection

The applicability of the pole approximation is limited to small momentum p_{x-s}. [Shapiro+ 1965]

$$0 \le \left| p_{d-p} \right| \le k_{d-p}$$

$$k_{d-p} = \sqrt{2 \ \mu_{dp} \ B_{dp}} \approx 53 \ MeV \ / \ c$$

Eckart function!

Normalization and comparison with literature

[Tumino+ 2014 (APJ)]

(MPWBA)

Normalization and comparison with literature

Angular Distributions

Once we have the S(E)-factor it is possible to calculate the «results»

Electron screening

Comparison with Greife data sets

- *p*-t channel:
- U_e = 13.2±1.8 eV (not exceeding 14 eV= adiabatic limit)
- ³He-n channel:
 - U_e = 11.7±1.6 eV (not exceeding 14 eV= adiabatic limit)

THM for NA - Roberta Spartà

Advantages vs. Limitations

- > Bare nucleus σ_b or $S_b(E)$
- Wide E range for excitation function only one beam energy
- RIB's and n-induced reaction
- So many validity tests!
- Easy set-up
- No need of extrapolation

- Necessity of preliminary study of QF and validity test
- Possible presence of different 3-body reaction mechanisms
- \succ σ is in arbitrary units (need of direct data to normalize)
- High angular and energy resolutions are needed
- Theoretical analysis is needed: PWIA, MPWBA, Modified R-matrix...
- Long data analysis

d(d,p)t + d(d,n)³He
[Tumino+2014, ApJ]
³He(d,p)⁴He
[La Cognata+2005, Phys.Rev.C]
⁷Li(p,a)⁴He

[Lattuada+2001, ApJ] [Lamia+2012, A&A]

• ³He(n,p)t [Pizzone+2020,EpJ]

And using RIBs

⁷Be(n,p)⁷Li & ⁷Be(n,α)⁴He
[Lamia+2019, ApJ][Lamia+2017, ApJ]
[Hayakawa+2021, ApJLett.]

In [Spartà+2021, FSPAS] rates comparison with

- Nacre[Angulo+1999, N.Phys.A]
- Cyburt[Cyburt 2004, Phys.Rev.D]
- or TH/SKM [Smith+ 1993, ApJ])
- «Direct»=2012 direct data compilation

Yields	Direct	² H(d,p) ³ H	² H(d,n) ³ He	³ He(d,p) ⁴ He	⁷ Li(p,α) ⁴ He	All	Observed
Y _p <u>D</u> /10- ⁵ 3<u>He</u>/10-⁶ <u>7</u>Li/10-¹⁰	0.249 2.645 9.748 4.460	$\begin{array}{c} 0.248\substack{+0.001\\-0.001}\\ 2.621\substack{+0.079\\-0.046}\\ 9.778\substack{+0.216\\-0.076}\\ 4.460\substack{+0.001\\-0.001}\end{array}$	$\begin{array}{c} 0.25^{+0.00}_{-0.00}\\ 2.718^{+0.077}_{-0.036}\\ 9.722^{+0.052}_{-0.092}\\ 4.470^{+0.010}_{-0.006}\end{array}$	$\begin{array}{c} 0.249\substack{+0.000\\-0.000}\\ 2.645\substack{+0.007\\-0.007}\\ 9.599\substack{+0.050\\-0.003}\\ 4.441\substack{+0.190\\-0.088}\end{array}$	0.249 ^{+0.000} 2.645 ^{+0.000} 9.748 ^{+0.000} 4.701 ^{+0.119} -0.082	$\begin{array}{c} 0.248\substack{+0.001\\-0.002}\\ 2.692\substack{+0.177\\-0.070}\\ 9.441\substack{+0.511\\-0.466}\\ 4.683\substack{+0.335\\-0.292}\end{array}$	0.256 ± 0.006 2.82 ± 0.26 ≥11. ± 2. 1.58 ± 0.31

TH rates in **BBN-BEW** code (C.A. Bertulani)

[Spartà+ 2021]

Reaction rate	⁷ Li/H	⁷ Be/H	⁷ Li/H+ ⁷ Be/H
TH2014 + Hou15	2.840 × 10 ⁻¹¹	4.149 × 10 ⁻¹⁰	4.433 × 10 ⁻¹⁰
TH2014 + Lamia17	2.845 × 10 ⁻¹¹	4.156 × 10 ⁻¹⁰	4.441 × 10 ⁻¹⁰
TH2014 + Lamia19	2.670 × 10 ⁻¹¹	3.990 × 10 ⁻¹⁰	4.260 × 10 ⁻¹⁰

THM@BBN: our bare nucleus measurements confirm the Standard BBN model, including the CLiP.

Thus, variations up to 20% in the rates do not affect what expected by observations, <u>at least considering these reactions!</u>

A new tension in the cosmological model from primordial deuterium?

Cyril Pitrou,^{1*} Alain Coc,² Jean-Philippe Uzan,¹ Elisabeth Vangioni¹

- 2020 LUNA measurement of the D(p,γ) 3He cross-section
- New neutron lifetime
- Re-evaluation of the cosmological baryon abundance from CMB+BAO

 \rightarrow new 1.8 σ -tension on the baryonic density (equivalently on the D/H)

...TH on PriMat2023!

	Observations		PriMat2023	PriMat2023 + TH[d(d,p)t & d(d,n)3He]	%	PriMat2023 + TH[d(d,p)t]	%	PriMat2023 + TH[d(d,n)3He]	%	10 ⁻³⁰ PriMat2023
		Н	0,75272872	0,75294499	0,028731	0,75277354	0,005954	0,75289733	0,0224	1 10 100 1000 10 ⁴
[Aver+,2020]	0,25453	Yp	0,24721111	0,24699225	-0,08853	0,24716551	-0,01845	0,24704076	-0,06891	- (-)
[Cooke+,2018]	2,527	(D/H)E+05	2,4376907	2,6178349	7,389953	2,4748711	1,52523	2,5762967	5,685955	
[Bania+,2002]	1,1	(³ He/H)E+05	1,0315673	1,0246836	-0,6673	1,0409139	0,906058	1,0149493	-1,61095	
		(T/H)E+08	7,7610446	8,2719106	6,582439	7,8812512	1,548846	8,1334452	4,798331	
		(³ He+T)E+05	1,0393284	1,0329555	-0,61317	1,0487951	0,910848	1,0230828	-1,56309	
[Sbordone+,2010]	1,58	(⁷ Li/H)E+11	2,845351	2,9445271	3,485549	2,876617	1,098845	2,9104938	2,289447	
		(⁷ Be/H)E+11	5,2245145	4,793241	-8,25481	5,2092733	-0,29172	4,8118025	-7,89953	
		(⁷ Li+ ⁷ Be)E+11	5,5090496	5,0876938	-7,64843	5,496935	-0,2199	5,1028519	-7,37328	
		(⁶ Li/H)E+14	1,1826905	1,2689438	7,292973	1,2005552	1,510514	1,2489952	5,60626	
		(⁹ Be/H)E+19	8,782494	9,57247	8,994894	8,9459697	1,861381	9,3798448	6,801608	
		(¹⁰ B/H)E+21	2,8722717	2,9769721	3,645212	2,8959387	0,823982	2,9495365	2,690024	
		(¹¹ B/H)E+16	3,2546901	2,8659418	-11,9442	3,2242954	-0,93387	2,8976108	-10,9712	:00'
		(CNO/H)E+16	7,8286994	7,542013	-3,66199	7,764397	-0,82137	7,6080047	-2,81905	in
		N _{eff}	3,0439773	3,0439773	0	3,0439773	0	3,0439773	0	

- Other TH reactions in PriMat2023
- Comparison with BBN_BEW and other codes

10^{9.5}K

10¹⁰K

10-10

× V 10 10^{8.5}K

10⁸K

10⁹K

Future work ahead

BBN: New data $(t(d,n)\alpha)$, new codes calculations, Bayesian reanalysis of the d+d reactions

THM:

- upcoming results from: ${}^{26}Al(n,p){}^{26}Si \& {}^{26}Al(n,\alpha){}^{23}Na$ ${}^{19}F(p,\alpha_{\pi,\gamma}){}^{23}Na$ ${}^{14}N(n,p){}^{14}C$ ${}^{12}C({}^{16}O,\alpha_{0,1}){}^{12}C$

- search for new Trojan Horse nuclei

- new measurements, e.g. $^{22}Ne(\alpha,n)^{25}Mg$, $^{17}O(\alpha,n)^{20}Ne$...

Thanks for your attention!

s-process

n-sources & n-poisons

THM for NA - Roberta Spartà