Nuclear Physics in Astrophysics XI

Contribution ID: 56

Type: Poster

Constraining the NiCu cycle in X-ray bursts: Spectroscopy of ⁶⁰**Zn**

Monday 16 September 2024 20:15 (20 minutes)

Type-I X-ray bursts are thermonuclear explosions in the atmospheres of accreting neutron stars in close binary systems. During these bursts, temperatures are achieved (0.8 - 1.5 GK) such that breakout from the HCNO cycle occurs, resulting in a whole new set of thermonuclear reactions; the rp-process.

Sensitivity studies have highlighted the 59 Cu $(p, \gamma){}^{60}$ Zn reaction as significant in its impact along the rpprocess path. In particular, competition between the 59 Cu $(p, \alpha){}^{56}$ Ni and 59 Cu $(p, \gamma){}^{60}$ Zn reactions within the NiCu cycle determines whether nucleosynthesis flows towards higher-mass regions. At present, stellar reaction rates for both of these processes are based entirely on statistical-model calculations.

Recently, however, an indirect study of the nucleus 60 Zn has surprisingly shown a plateau in the level-density of states in the region of interest, contrary to the usual expectation of exponential growth with increasing excitation energy. As a result, a statistical-model approach of the 59 Cu (p,γ) reaction rate may be insufficient, and it is therefore now essential to explore the properties of excited states in 60 Zn that influence the astrophysical 59 Cu $(p,\gamma)^{60}$ Zn reaction.

In this work, we aim to utilise the $^{59}\mathrm{Cu}(d,n)$ reaction in inverse kinematics at the Facility for Rare Isotope Beams (FRIB) to obtain the first measurement of resonances in the $^{59}\mathrm{Cu}(p,\gamma)$ reaction.

Primary authors: O'SHEA, Connor (University Of Surrey); LOTAY, G. (University of Surrey); RANDHAWA, J. S. (University of Notre Dame)

Co-authors: ESTRADE, A. (Central Michigan University); GADE, A. (FRIB); ROGERS, A. M. (University of Massachussets Lowell); SPYROU, A. (NSCL); BROWN, B. A. (FRIB); REED, B. J. (University of Surrey); LONGFELLOW, B. (Lawrence Livermore National Laboratory); PAXMAN, C. (University of Surrey); BARDAYAN, D. (University of Notre Dame); SEWERYNIAK, D. (Argonne National Laboratory); DOHERTY, D. T. (University of Surrey); WEIS-SHAAR, D. (NSCL); MONTES, F. (NSCL); SCHATZ, H. (NSCL); HENDERSON, J. (University of Surrey); PEREIRA, J. (NSCL); CANETE, L. (University of Surrey); MOUKADDAM, M. (University of Strasbourg); WIESCHER, M. (University of Notre Dame); TIMOFEYUK, N. K. (University of Surrey); BENDER, P. C. (University of Massachussets Lowell); GASTIS, P. (Los Alamos National Laboratory); O'MALLEY, P. (University of Notre Dame); ZEGERS, R. G. T. (NSCL); KANUNGO, R. (Saint Mary's University); BYRNE, S. (University of Surrey); NOJI, S. (FRIB); AHN, T. (University of Notre Dame); CATFORD, W. N. (University of Surrey); MEISEL, Z. (Ohio State University)

Presenter: O'SHEA, Connor (University Of Surrey)

Session Classification: Poster Session