# Constraining the NiCu cycle in X-ray Bursts: Spectroscopy of <sup>60</sup>Zn



<u>C. O'Shea</u><sup>1</sup>, G. Lotay<sup>1</sup>, D.T. Doherty<sup>1</sup>, A. Gade<sup>2</sup>, T. Ahn<sup>3</sup>, D. Bardayan<sup>3</sup>, P.C. Bender<sup>4</sup>, B.A. Brown<sup>2</sup>, S. Byrne<sup>4</sup>, W.N. Catford<sup>1</sup>, C. Cousins<sup>1</sup>, A. Estrade<sup>5</sup>, P.Gastis<sup>6</sup>, S.A. Gillespie<sup>2</sup>, J. Henderson<sup>1</sup>, R. Kanungo<sup>7</sup>, B. Longfellow<sup>8</sup>, Z. Meisel<sup>9</sup>, F. Montes<sup>10</sup>, M. Moukaddam<sup>11</sup>, C. Müller-Gatermann<sup>12</sup>, S. Noji<sup>2</sup>, P. O'Malley<sup>3</sup>, C. Paxman<sup>1</sup>, J. Pereira<sup>10</sup>, J.S. Randhawa<sup>2</sup>, B.J. Reed<sup>1</sup>, A.M. Rogers<sup>4</sup>, H. Schatz<sup>10</sup>, D. Seweryniak<sup>12</sup>, A. Spyrou<sup>10</sup>, N.K. Timofeyuk<sup>1</sup>, D. Weisshaar<sup>10</sup>, M. Wiescher<sup>3</sup>, R.G.T. Zegers<sup>10</sup>

<sup>1</sup>University of Surrey, UK, <sup>2</sup>Facility for Rare Isotope Beams, USA, <sup>3</sup>University of Notre Dame, UK <sup>4</sup>University of Massachusetts Lowell, USA, <sup>5</sup>Central Michigan University, USA, <sup>6</sup>Los Alamos National Laboratory, USA, <sup>7</sup>Saint Mary's University, CANADA, <sup>8</sup>Lawrence Livermore National Laboratory, USA, <sup>9</sup>Ohio State University, USA, <sup>10</sup>National Superconducting Cyclotron Laboratory, USA, <sup>11</sup>University of Strasbourg, FRANCE, <sup>12</sup>Argonne National Laboratory, USA

# 1. Motivation and Astrophysical Background

**Type-I X-ray bursts** describe huge spikes in X-ray emission that occur as a result of explosions on the surface of an **accreting neutron star** 

The extreme temperatures and densities feed a set of reactions known as the *rp* process: a series of rapid proton-captures resulting in the synthesis of proton-rich nuclei

**Present simulations** of these stellar phenomena are ultimately **limited by uncertainties in reaction rates** of key *rp*-process reactions



Fig 1. Artist Interpretation of an X-ray burst.



FRIB



**Competition in the NiCu cycle** between  ${}^{59}Cu(p,\gamma){}^{60}Zn - {}^{59}Cu(p,\alpha){}^{56}Ni$  determines higher-mass nucleosynthesis

Present <sup>59</sup>Cu( $p, \gamma$ ) rate based on **statistical-model** calculations, which may be insufficient [1]

Variation of present rate shown to have a significant effect on burster light curve [2], yet no information presently exists for key states in <sup>60</sup>Zn above threshold  $S_{\rho} = 5105.0(4)$  keV

**Fig 2.** Influence on X-ray burst light curve from variation of the stellar reaction rate of  ${}^{59}Cu(p,\gamma)$  [2]

Previous studies e.g. [3] limited to high-spin states, which have no influence

Aim: constrain the present <sup>59</sup>Cu( $p,\gamma$ ) reaction rate by measuring the relevant states in <sup>60</sup>Zn, which correspond to low- $\ell$  transfer resonances to the 3/2<sup>-</sup> ground state of <sup>59</sup>Cu

$$N_A \langle \sigma \nu \rangle = \frac{1.54 \times 10^{11}}{(\mu T_9)^{3/2}} \sum_{i} \exp\left[\frac{-11.605 E_{\text{res},i}}{T_9}\right] \cdot (\omega \gamma)_i$$

# 2. Experimental Details

Populated states in <sup>60</sup>Zn via <sup>59</sup>Cu(*d*,*n*) transfer conducted at the Facility for Rare Isotope Beams Fig 6. Singles spectrum coincident with <sup>60</sup>Zn recoils. Gamma-ray transitions, both known and new, resulting from de-excitation of <sup>60</sup>Zn labelled. Inset: first identification of multiple ground-state transitions, indicating the existence of excited states above  $S_p = 5105.0(4)$  keV.

Observation of **new ground-state transitions in** <sup>60</sup>**Zn**, providing energies for **six proton-unbound excited states** at  $E_{ex} = 5208.9(74)$ , 5469.6(34), 5722.3(35), 5875.4(35), 6109.7(25), and 6239.4(67) keV



Fig 7. (a)  $\gamma$ - $\gamma$  coincidence projection of the 1004-keV transition at low energies. (b)  $\gamma$ - $\gamma$  coincidence

#### (FRIB), USA

Experimental setup previously shown as **effective** for studies relevant to **nuclear astrophysics** [4,5]

**Gamma-rays** from residues **detected by GRETINA** – a state-of-the-art tracking detector array consisting of 8 segmented HPGe modules

**Neutrons** from transfer **detected by LENDA** – a low-energy *n*-detector array consisting of 24 plastic scintillator modules (bars) <image>

Fig 3. GRETINA (right), LENDA (left).

Residual particles then transmitted through the **S800**, where various detectors provide **time-of-flight** and **energy-loss** measurements



projection of the 1004-keV transition at high energies. (c)  $\gamma$ - $\gamma$  coincidence projection of the 1189-keV transition at low energies. (d)  $\gamma$ - $\gamma$  coincidence projection of the 1189-keV transition at high energies.

Observation of **new coincident transitions in** <sup>60</sup>**Zn**, providing energies for an additional **seven proton-unbound excited states** at  $E_{ex} = 5222.4(38)$ , 5497.2(32), 5780.4(36), 5948.0(29), 6249.1(52), 6799.1(46), and 6836.1(58) keV

# 5. <sup>60</sup>Zn Level Scheme



Fig 8. Level scheme of <sup>60</sup>Zn from the present work. New transitions highlighted in red. Gamma-ray energies in units of keV.

### 6. Conclusions and Future Work

#### **3. Focal Plane Analysis**

Information on the residues produced by reactions at the target position used to **select** upon <sup>60</sup>Zn nuclei:

 Ionisation chamber – residues may be separated by atomic number, Z, via a measurement of their energy loss, dE

 Timing scintillators – residues may be separated by mass-to-charge ratio, A /q, via a measurement of their time-of-flight, TOF

Plot of TOF versus d*E* achieves **seperation** on an **isotope-by-isotope basis** – may then look to the **y rays detected coincident** with <sup>60</sup>Zn nuclei



TOF(OBJ-E1) ~ A /q [arb. units]

**Fig 5.** Separation of residues via A/q and Z.

**First observation** of 30  $\gamma$  rays in <sup>60</sup>Zn, leading to the measurement of 27 new states, 17 of which are above threshold, 6 of which are presumed low- $\ell$  transfers

Next steps include completing calculations for resonances' proton partial widths (finalise integrated cross sections, spin-parity assignments) as to determine the new constraints for the <sup>59</sup>Cu( $p,\gamma$ ) reaction rate

#### References

D. Soltesz *et al.*, Phys. Rev. C **103**, 015802 (2021)
Z. Meisel, G. Merz, and S. Medvid, The Astrophys. J. **872** (2019)
G. de Angelis *et al.*, Nuc. Phys. A **630**, 426433 (1998)
C. Wolf *et al.*, Phys. Rev. Lett. **122**, 232701(2019)
S. Hallam *et al.*, Phys. Rev. Lett. **126**, 042701 (2021)