Constraining the NiCu cycle in X-ray Bursts: Spectroscopy of °°Zn
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conducted at the Facility for Rare Isotope Beams
(FRIB), USA

Fig 7. (2) y-y coincidence projection of the 1004-keV transition at low energies. (b) y-y coincidence
projection of the 1004-keV transition at high energies. (c) y-y coincidence projection of the 1189-keV
transition at low energies. (d) y-y coincidence projection of the 1189-keV transition at high energies.

Observation of new coincident transitions in %°Zn, providing energies for an additional
seven proton-unbound excited states at E,_ = 5222.4(38), 5497.2(32), 5/80.4(36),

5948.0(29), 6249.1(52), 6799.1(46), and 6836.1(58) keV

Experimental setup previously shown as effective for
studies relevant to nuclear astrophysics [4,5]

Gamma-rays from residues detected by GRETINA -
a state-of-the-art tracking detector array consisting of
8 segmented HPGe modules

5.°9Zn Level Scheme

Neutrons from transfer detected by LENDA -
a low-energy n-detector array consisting of
24 plastic scintillator modules (bars)

Residual particles then transmitted through the S800, where various detectors provide
time-of-flight and energy-loss measurements
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Fig 4. lllustration of the experimental setup, with GRETINA, LENDA, and the S800, at the Facility for Rare Isotope Beams (FRIB). Fig 8. Level scheme of ®*Zn from the present work. New transitions highlighted in red. Gamma-ray energies in units of keV.

3. Focal Plane Analysis S 6. Conclusions and Future Work

First observation of 30 y rays in ®°Zn, leading to the measurement of 27 new states,

Information on the residues produced by reactions
I ques produ Y ! 17 of which are above threshold, 6 of which are presumed low-£ transfers

at the target position used to select upon %°Zn
nuclei:

dE ~ Z [arb. units]
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 Timing scintillators - residues may be separated
by mass-to-charge ratio, A/q, via a
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Fig 5. Separation of residues via A/qgand Z.
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