Weak rates determining the production of the ²⁰⁵Pb cosmochronometer in AGB stars

Thomas Neff¹, Riccardo Mancino^{1,2,3}, Gabriel Martínez-Pinedo^{1,3,4}, and the E121 Collaboration

¹ GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany

- ² Institute of Particle and Nuclear Physics, Charles University, Prague, 180 00, Czech Republic
- ³ Institut für Kernphysik (Theoriezentrum), Fachbereich Physik, Technische Universität Darmstadt, Schloßgartenstraße 2, 64289 Darmstadt, Germany
- ⁴ Helmholtz Forschungsakademie Hessen für FAIR, GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany

- ²⁰⁵Pb is an *s*-process element produced in AGB stars the exact production rate depends on:
 - the destruction of ²⁰⁵Pb in the ¹³C pocket at T~90 MK by electron capture from the thermally excited 1/2⁻ state
 - the production of ^{205}Pb by bound β decay of ^{205}Tl at T~250 MK in He flashes
- The transition between the 1/2⁺ ground state of ²⁰⁵Tl to the first excited 1/2⁻ state at 2.3 keV in ²⁰⁵Pb was measured for the first time by the E121 Collaboration with the ESR at GSI Darmstadt [1].

- ²⁰⁵Pb bound capture rate rapidly increases with thermal population of 1/2⁻ state at 2.3 keV.
- Bound capture rate starts to drop when atomic L- and K-orbits become depopulated.
- ²⁰⁵Pb continuum capture rate depends on population of 1/2state and increases rapidly with electron density.
- ²⁰⁵Tl bound β decay requires vacancies in the atomic K-shell, only found at high temperatures, also sensitive to electron

Method

- Following the basic approach of Takahashi and Yokoi [2] the ^{205}Pb electron capture and ^{205}Tl bound β decay rates depend on:
 - the nuclear matrix elements (fixed by experiment consistent with shell model calculations of first-forbidden transition using KHH interaction)
 - the thermal population of the nuclear states, especially the 1/2⁻ state in ²⁰⁵Pb at 2.3 keV
 - continuum and bound electron wave functions of ions (calculated with DHF code)
 - the energies and occupations of atomic configurations distribution of charge and excitation states of ions as a function of temperature and electron density determined by Saha equation
 - the interaction of the ions with the surrounding plasma changes the atomic ionization potentials

density.

Comparison with literature rates

on calculations by Takahashi and Yokoi [3] with different assumptions about the Q-value and are extrapolated to low temperatures.

• Our results [1] improve upon Takahashi and Yokoi mainly due to the experimentally determined nuclear matrix element and an improved Q-value but also because of a more detailed treatment of atomic states and wave functions and improvements in the ion-plasma interaction.

t.neff@gsi.de

[1] Leckenby, et al, accepted for publication in Nature

[2] Takahashi, Yokoi, *Nucl. Phys. A* **404**, 578 (1983)

[3] Takahashi, Yokoi, Atom. Data and Nucl. Data Tables 36, 375 (1987)

Nuclear Physics in Astrophysics XI, Dresden, 2024