

# The first direct measurement of the 65 keV resonance strength of the <sup>17</sup>O(p,γ)<sup>18</sup>F reaction at LUNA



Riccardo Maria Gesuè<sup>1</sup> for the LUNA collaboration

<sup>1</sup> Gran Sasso Science Institute, INFN LNGS

contacts: gesue.riccardo@gssi.it



### Astrophysical motivations

• A precise determination of proton capture reaction rates on oxygen is mandatory to predict the abundance ratios of the oxygen isotopes in stellar environments where hydrogen burning is active.

• The  ${}^{17}O(p,\gamma){}^{18}F$  reaction (Q= 5607 keV) plays a crucial role in AGB nucleosynthesis and in explosive hydrogen burning occurring in type la novae.

• In the the AGB scenario (20 MK < T < 80 MK) the main



## State of the art

• Recently LUNA performed precise determination of the E<sub>cm</sub> = 183 keV resonance strength of the  $^{17}O(p,\gamma)^{18}F$  reaction[1].

• The strength of the  $E_{cm} = 65$  keV resonance is presently determined only through indirect measurements [2-5], with the adopted value of  $\omega \gamma =$ (16±3) peV[5].

contribution to the reaction rate comes from the  $E_{cm} = 65 \text{ keV}$ resonance.

• At novae temperatures (100 MK < T < 400 MK) the E<sub>cm</sub> = 183 keV resonance dominates together with the direct capture (DC) component (Fig. 1).

**Fig.1**: Fractional contribution of the reaction rate of the  $^{17}$  O(p, $\gamma$ )  $^{18}$  F[1].

• Current adopted value of proton capture partial width  $\Gamma_{p} = (35.0 \pm 6.8) \times 10^{-9} \text{ eV} [6].$ 

• The branching ratio of the de-excitation of the resonance is well known[7].

### Experimental setup

• Situated at LNGS below a 1400m thick

overburden of rock:

→ Muon-induced background reduced by 6 orders of magnitude;

→ Neutron background reduced by 3 orders of magnitude.



**Fig.2**: Detail of the shielding.



#### Critical points of the measurement

- Low expected counting rate: N = 0.31 reactions/C.
- The environmental and beam induced background must be reduced.
- The knowledge of the beam induced background (BIB) is crucial for the evaluation of the signal.
- The target must be well characterized in thickness and stoichiometry.
- The detection efficency must be maximized.
- Data analysis focused on a regime with  $S/N \approx 1$ .





• LUNA 400kV electrostatic accelerator can provide stable and intense (<I>=200 µA), proton or alpha beams with high energy resolution (30 eV) [8].

•  $4\pi$  BGO detector segmented in 6 crystals, with high efficiency (74%@661 keV, Fig. 2).

| • Periodic scans of the ${}^{16}O(p,\gamma){}^{16}F$<br>$E_{cm} = 144 \text{ keV resonance:}$<br>$\rightarrow {}^{18}O \text{ abundance;}$<br>$\rightarrow \text{ target degradation.}$<br>• At the energy of interest the plateau<br>remains unchanged within the<br>uncertainties after Q > 20C cumulated on<br>target (Fig.4).<br>• Produced targets ~20keV and ~50keV<br>thick (@Ep=80 keV, Fig.5).<br>• Fig.5: Ley | $F_{p} [keV]$ | <ul> <li>Alluminum target chamber and target holder to reduce absorption.</li> <li>Lead + borated polyethylene shielding for further background reduction of a factor 4.27 ± 0.09 in the ROI (5200keV - 6200keV) with respect to only lead shielding (Fig.3)[9].</li> </ul>                        | $\tilde{f}_{s,0}^{s}$ $\tilde{f}_{s,0}^{t}$ $\tilde{f}_$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Measurement campaigns</li> <li>4 campaigns in 2021-2022.</li> <li>420C on top of 65keV resonance on <sup>17</sup>O targets.</li> <li>300C on top of 65keV resonance on UPW targets to monitor BIB.</li> </ul>                                                                                                                                                                                                  | <ul> <li>Measurement objective are peak falls in the same ROI -</li> <li>Use the detector segmenta isolate resonance events (F → Select events in sum pe → Among these select eve</li> <li>Apply the same gates on ru</li> </ul>                                                        | Data analysis<br>e the net counts of the resonance, but p+D sum<br>→ BIB contribution due to D contamination (Fig.7).<br>ation and knowledge on <sup>18</sup> F branching ratio to<br>Fig.8):<br>eak;<br>ents with primary energy reading in one crystal.<br>uns on UPW targets to subtract random | Reference $\omega\gamma_{p,\gamma}$ [peV] $\omega_{\gamma}^{bare}$ [peV] $\Gamma_p$ [neV] $\Gamma_p^{bare}$ [neV]Previously adopted value16(3)[5]40(7)[6]35(6)[6]Present work [10]34(8)30(6)39(9)34(8)• First direct measurement of the resonance strength, about a factor 2 higher than the values reported in literature.• The $\Gamma_p$ was calculated, in excellent agreement with previous LUNA result [6].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>Simulation of the setup</li> <li>Geant4 simulations optimized on well-known spectra of <sup>137</sup>Cs,<sup>60</sup>Co, <sup>14</sup>N+p@270keV (Fig.6).</li> <li>Difference with experiment</li> </ul>                                                                                                                                                                                                       | <ul> <li>Apply the same gates on D(<br/>resonance.</li> <li>Q = 5493 keV</li> </ul>                                                                                                                                                                                                     | C simulation to subtract its contribution under the                                                                                                                                                                                                                                                | <ul> <li>Lowest strength value ever measured directly.</li> <li>Technical paper on setup published [9].</li> <li>Results paper <u>published</u> on PRL vol.133 issue 5 [10].</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

- $\leq$  3% in all three cases.
- Simulations used to determine detector efficiency.
- DC contribution under the resonance determined simulating branching ratios of [1].





**5** [10]. References [1] Di Leva A. et al, PRC 89, 015803 (2014) [2] H.-B. Mak et al., Nucl. Phys. A 343, 79 (1980) [3] V. Landre et al. , PRC 40, 1972 (1989) [4] J. C. Blackmon et al. , PRL 74, 2642 (1995) [5] C. Fox et al, PRC 71, 055801 (2005) [6] Bruno et al., PRL, 117 (2016) [7] Tilley et al., Nucl. Phys. A 595, 1 (1995) [8] Formicola et al., Nucl. Instr. Meth. Phys. A, 507 (2003) [9] Skowronski et al., J Phys. G 50, 4 (2023) [10] Gesuè et al., PRL 133, 5 (2024)