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Introduction

The radioisotope 26Al is crucial for understanding cosmic 

nucleosynthesis, with its 1809-keV γ-ray line providing direct 

evidence of element formation in the universe1. However, there is a 

lack of experimental data for the 26Al(n,p) and 26Al(n,α) reaction 

rates at high temperatures between 1.5-3.5 GK2. Our research 

addresses this gap by using a high-intensity neutron source 

generated by a thick 7Li target and a proton beam, enabling precise 

measurement of these reaction rates. Our measurements will be 

conducted with a Micromegas-based gaseous detector, facilitating 

accurate detection of outgoing protons and reducing uncertainties in 
26Al abundance predictions. C. Lederer-Woods et al. (n_TOF Collaboration)

Phys. Rev. C 104, L022803 (2021).
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• 7Li(p,n) reaction as neutron source, placed 3 cm upstream of the  26Al target. 

• Varying proton beam energy between 1.9-3.6 MeV.

• Neutron intensity 109 n/s for a 10 𝜇A proton beam.

• Gaseous detector to reduce the neutron and gamma background.

• Segmented Micromegas detector, where the central pad serves as a 

trigger, and outer pads as veto pads.  

M. Friedman, Production of quasi-stellar neutron field at explosive stellar 

temperatures, Eur. Phys. J. 256 A. 56, 155 (2020).
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For each proton energy, a corresponding neutron energy distribution ϕ𝑖
𝑒𝑥𝑝 and a 

cross section σ𝑖
𝑒𝑥𝑝 is extracted. We can then find a set of weights Wi  that will 

satisfy:

𝜙𝑒𝑥𝑝 = 
1

∑𝑊𝑖
 ⋅σ 𝑊𝑖 ∙ 𝜙𝑒𝑥𝑝

𝑖 = 𝜙𝑀𝐵

And subsequently obtain a weighted averaged experimental cross section3: 

𝜎𝑒𝑥𝑝= 
1

∑𝑊𝑖
 ⋅σ 𝑊𝑖 ∙ 𝜎𝑒𝑥𝑝

𝑖 ∝ 𝑀𝐴𝐶𝑆
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• Ion Backflow (IBF): IBF can cause a positive charge buildup in 

the drift region, distorting the electric field and negatively 

impacting detector performance.

•  IBF Proportionality 4 : 𝐼𝐵𝐹 ∝
1
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𝑝

𝜎𝑡

2

, where FR is the field 

ratio, p is the mesh pitch and 𝜎𝑡 = 𝐷𝑡𝑧 , where 𝐷𝑡 is the transverse 

diffusion coefficient of the electron and z is the path traversed. 

• Active Region Design: The active region design effectively 

reduces background ionization rates, minimizing the ion backflow  

effect.

• Current uncertainties in these reactions 

are estimated to be a factor of 6 for the  

(n,p) and a factor of 3 for (n,α) reaction 

rates within 1.5–3.5 GK5.

• A factor of two in the 26Al(n,p) reaction 

rate changes the final 26Al abundance by 

~40%6.

• A factor of 10 in the 26Al(n,α) reaction 
rate changes the abundance by ~45%6.

• Our aim is to reduce these 

uncertainties to 25% or less across 

the full energy range.
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