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stars allow for better motivated, and therefore hopefully
more accurate, GCE models, but this kind of modelling
can provide valuable feedback to binary stellar physics in
the same way it has done to single stellar models.

In this work, we lay out a framework for the calculation
of ‘e↵ective binary stellar yields’, a concept introduced in
(Brinkman et al. 2019) to allow the inclusion of mixed pop-
ulations of binary and single stars in existing GCE codes.
These e↵ective binary stellar yields can be treated by GCE
codes as if they were simply single stellar yields, and can be
rapidly recalculated using di↵erent assumptions about bi-
nary birth distributions and mass transfer e�ciency factors
during stellar winds, RLOF, and supernovae. Using yields
from Farmer et al. (2023), we demonstrate the e↵ect that
varying mass transfer e�ciencies and binary fractions has
on e↵ective binary stellar yields. We also demonstrate the
accuracy and limitations of these yields by comparing with
a more realistic population formed of many individual bi-
nary systems. We also provide a check-list to guide future
binary stellar modellers in the outputs needed to maximise
the usefulness of their yield calculations.

The code available for producing both the e↵ective bi-
nary stellar yields and the populations of individual binary
systems, as well as a set of pre-computed, machine-readable
tables of e↵ective binary stellar yields computed using the
yields of Farmer et al. (2023) under di↵erent binary assump-
tions.

In Section ??, we describe the calculation of the e↵ec-
tive binary stellar yields. In Section 4, we illustrate and
discuss the e↵ective yields computed using binary yields
from Farmer et al. (2023), with comparison to a population
of individual binaries. In Section 5, we o↵er a check list to
guide future binary modelling works to improve functional-
ity with GCE calculations, and conclude in Section 6.

2. E↵ective binary stellar yields

Eqn. 4 of Brinkman et al. (2019) defines the e↵ective binary
stellar yield, Ye↵ , as:

Ye↵ =
(1 � h)Ysingle + h(Yprim + hYseci)

1 + hhqi (1)

where Yprim is the net yield of the primary, hYseci is the
average net yield of the secondary with consideration to
the assumed birth distribution of secondaries, Ysingle is the
net yield of a single star with equivalent mass and single-
stellar evolution to the primary, h is the binary fraction
relevant to the primary mass, and hqi is the average value
of the mass ratio q = Msec/Mprim with consideration to the
assumed birth distribution of secondary masses.

The is equation naturally conserves the mass of star
forming material, and – assuming the same initial mass
function for single stars and primaries – can be initialised
with the same frequency and weighting as a single star of
the same mass. This allows a GCE code to treat a table
of e↵ective binary stellar yields as if they were a table of
single yields. All that remains, then, is the proper definition
of each term.

The birth distribution of secondary masses is commonly
assumed to be flat in q between 0 and 1, implying that
hqi= 0.5. Usage of a more complicated distribution is triv-
ial, although the distribution assumed for q must also be

propagated into the calculation of hYseci. In this work, we
assume that the distribution of secondary masses is flat in
q, but it is worth considering the e↵ect of the upper and
lower bounds on this distribution.

The binary yields currently available are for a very sim-
ple evolution channel: stable mass transfer from an evolved
donor 2 onto a companion star treated as a point mass (we
will assume later that this is a main sequence star). How-
ever, not all Roche-filling giants will undergo stable mass
transfer. Many of these interacting stars will instead un-
dergo unstable mass transfer leading to a common envelope
resulting in either a merger with its companion or a signif-
icant shortening of the orbital period which is followed by
further episodes of mass transfer. [TODO: find some proper
bounds and citations for q related to this; my intuition on
this seems to be o↵.] Farmer et al. (2023) and Brinkman
et al. (2023) keep q fixed values of q when initiating their
binaries (0.7 and 0.9, respectively) to avoid this issue en-
tirely, but of course in nature a wide range of secondary
masses are possible. For this reason, it is of interest to see
what e↵ect increasing the upper limit the lower permissible
level of q has on the e↵ective binary yields.

This allows us to probe two di↵erent (bad) assumptions
we might make. Maintaining the bounds on q from 0 to 1
with a binary fraction representative of nature is equiva-
lent to assuming that this simple evolution channel is rep-
resentative of all binaries. On the other hand, raising the
lower limit (while reducing the overall binary fraction ac-
cordingly) is instead saying we’re better o↵ treating these
unknown binary stellar evolution channels as singles. Ide-
ally, of course, we would instead break down the ‘binary’
term in the e↵ective yield calculation further into multiple
terms accounting for di↵erent binary evolution channels,
with consideration to the birth distributions of the binary
systems that undergo these channels. We will discuss what
this might look like in more detail later in this section, but
for now the kinds of yield-sets required to make these com-
putations (merger models, for example) are not available.

the binary fraction h, motivated by observational stud-
ies such as Sana et al. (2012) and Moe & Di Stefano (2017),
is widely accepted to be a function of the birth mass of the
primary. Any dependence on the metallicity is uncertain
and typically ignored, but could be trivially accounted for
within this formalism as the metallicity of the underlying
stellar models will always be known. The question of how
close two stars need to be in order to be considered a bi-
nary is a relevant one that is not often addressed in such
discussions. We treat the issue of di↵erent orbital separa-
tions separately later in this section, and for now simply
state that, ideally, the fraction used would be relevant to
binaries interacting in the manner modelled by underlying
modelling work that produced the relevant yield sets.

The binary yield terms Yprim and Ysec are where addi-
tional physics can start to be introduced in order to form
a better model stellar population. Ysingle is simply the yield
of a single star with equivalent mass and, ideally, physical
ingredients such as the nuclear network and stellar mixing
used. A more realistic model for this term might include a
mix of rotating and non-rotating stellar models with con-
sideration to some assumed birth distribution of the spins.

2
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stars allow for better motivated, and therefore hopefully
more accurate, GCE models, but this kind of modelling
can provide valuable feedback to binary stellar physics in
the same way it has done to single stellar models.

In this work, we lay out a framework for the calculation
of ‘e↵ective binary stellar yields’, a concept introduced in
(Brinkman et al. 2019) to allow the inclusion of mixed pop-
ulations of binary and single stars in existing GCE codes.
These e↵ective binary stellar yields can be treated by GCE
codes as if they were simply single stellar yields, and can be
rapidly recalculated using di↵erent assumptions about bi-
nary birth distributions and mass transfer e�ciency factors
during stellar winds, RLOF, and supernovae. Using yields
from Farmer et al. (2023), we demonstrate the e↵ect that
varying mass transfer e�ciencies and binary fractions has
on e↵ective binary stellar yields. We also demonstrate the
accuracy and limitations of these yields by comparing with
a more realistic population formed of many individual bi-
nary systems. We also provide a check-list to guide future
binary stellar modellers in the outputs needed to maximise
the usefulness of their yield calculations.

The code available for producing both the e↵ective bi-
nary stellar yields and the populations of individual binary
systems, as well as a set of pre-computed, machine-readable
tables of e↵ective binary stellar yields computed using the
yields of Farmer et al. (2023) under di↵erent binary assump-
tions.

In Section ??, we describe the calculation of the e↵ec-
tive binary stellar yields. In Section 4, we illustrate and
discuss the e↵ective yields computed using binary yields
from Farmer et al. (2023), with comparison to a population
of individual binaries. In Section 5, we o↵er a check list to
guide future binary modelling works to improve functional-
ity with GCE calculations, and conclude in Section 6.

2. E↵ective binary stellar yields

Eqn. 4 of Brinkman et al. (2019) defines the e↵ective binary
stellar yield, Ye↵ , as:

Ye↵ =
(1 � h)Ysingle + h(Yprim + hYseci)

1 + hhqi (1)

where Yprim is the net yield of the primary, hYseci is the
average net yield of the secondary with consideration to
the assumed birth distribution of secondaries, Ysingle is the
net yield of a single star with equivalent mass and single-
stellar evolution to the primary, h is the binary fraction
relevant to the primary mass, and hqi is the average value
of the mass ratio q = Msec/Mprim with consideration to the
assumed birth distribution of secondary masses.

The is equation naturally conserves the mass of star
forming material, and – assuming the same initial mass
function for single stars and primaries – can be initialised
with the same frequency and weighting as a single star of
the same mass. This allows a GCE code to treat a table
of e↵ective binary stellar yields as if they were a table of
single yields. All that remains, then, is the proper definition
of each term.

The birth distribution of secondary masses is commonly
assumed to be flat in q between 0 and 1, implying that
hqi= 0.5. Usage of a more complicated distribution is triv-
ial, although the distribution assumed for q must also be

propagated into the calculation of hYseci. In this work, we
assume that the distribution of secondary masses is flat in
q, but it is worth considering the e↵ect of the upper and
lower bounds on this distribution.

The binary yields currently available are for a very sim-
ple evolution channel: stable mass transfer from an evolved
donor 2 onto a companion star treated as a point mass (we
will assume later that this is a main sequence star). How-
ever, not all Roche-filling giants will undergo stable mass
transfer. Many of these interacting stars will instead un-
dergo unstable mass transfer leading to a common envelope
resulting in either a merger with its companion or a signif-
icant shortening of the orbital period which is followed by
further episodes of mass transfer. [TODO: find some proper
bounds and citations for q related to this; my intuition on
this seems to be o↵.] Farmer et al. (2023) and Brinkman
et al. (2023) keep q fixed values of q when initiating their
binaries (0.7 and 0.9, respectively) to avoid this issue en-
tirely, but of course in nature a wide range of secondary
masses are possible. For this reason, it is of interest to see
what e↵ect increasing the upper limit the lower permissible
level of q has on the e↵ective binary yields.

This allows us to probe two di↵erent (bad) assumptions
we might make. Maintaining the bounds on q from 0 to 1
with a binary fraction representative of nature is equiva-
lent to assuming that this simple evolution channel is rep-
resentative of all binaries. On the other hand, raising the
lower limit (while reducing the overall binary fraction ac-
cordingly) is instead saying we’re better o↵ treating these
unknown binary stellar evolution channels as singles. Ide-
ally, of course, we would instead break down the ‘binary’
term in the e↵ective yield calculation further into multiple
terms accounting for di↵erent binary evolution channels,
with consideration to the birth distributions of the binary
systems that undergo these channels. We will discuss what
this might look like in more detail later in this section, but
for now the kinds of yield-sets required to make these com-
putations (merger models, for example) are not available.

the binary fraction h, motivated by observational stud-
ies such as Sana et al. (2012) and Moe & Di Stefano (2017),
is widely accepted to be a function of the birth mass of the
primary. Any dependence on the metallicity is uncertain
and typically ignored, but could be trivially accounted for
within this formalism as the metallicity of the underlying
stellar models will always be known. The question of how
close two stars need to be in order to be considered a bi-
nary is a relevant one that is not often addressed in such
discussions. We treat the issue of di↵erent orbital separa-
tions separately later in this section, and for now simply
state that, ideally, the fraction used would be relevant to
binaries interacting in the manner modelled by underlying
modelling work that produced the relevant yield sets.

The binary yield terms Yprim and Ysec are where addi-
tional physics can start to be introduced in order to form
a better model stellar population. Ysingle is simply the yield
of a single star with equivalent mass and, ideally, physical
ingredients such as the nuclear network and stellar mixing
used. A more realistic model for this term might include a
mix of rotating and non-rotating stellar models with con-
sideration to some assumed birth distribution of the spins.

2
We note that Brinkman et al. (2023) provide some simulations

where mass transfer through RLOF occurs while the primary is

on the main sequence.

Article number, page 2 of 9

A&A proofs: manuscript no. output

stars allow for better motivated, and therefore hopefully
more accurate, GCE models, but this kind of modelling
can provide valuable feedback to binary stellar physics in
the same way it has done to single stellar models.

In this work, we lay out a framework for the calculation
of ‘e↵ective binary stellar yields’, a concept introduced in
(Brinkman et al. 2019) to allow the inclusion of mixed pop-
ulations of binary and single stars in existing GCE codes.
These e↵ective binary stellar yields can be treated by GCE
codes as if they were simply single stellar yields, and can be
rapidly recalculated using di↵erent assumptions about bi-
nary birth distributions and mass transfer e�ciency factors
during stellar winds, RLOF, and supernovae. Using yields
from Farmer et al. (2023), we demonstrate the e↵ect that
varying mass transfer e�ciencies and binary fractions has
on e↵ective binary stellar yields. We also demonstrate the
accuracy and limitations of these yields by comparing with
a more realistic population formed of many individual bi-
nary systems. We also provide a check-list to guide future
binary stellar modellers in the outputs needed to maximise
the usefulness of their yield calculations.

The code available for producing both the e↵ective bi-
nary stellar yields and the populations of individual binary
systems, as well as a set of pre-computed, machine-readable
tables of e↵ective binary stellar yields computed using the
yields of Farmer et al. (2023) under di↵erent binary assump-
tions.

In Section ??, we describe the calculation of the e↵ec-
tive binary stellar yields. In Section 4, we illustrate and
discuss the e↵ective yields computed using binary yields
from Farmer et al. (2023), with comparison to a population
of individual binaries. In Section 5, we o↵er a check list to
guide future binary modelling works to improve functional-
ity with GCE calculations, and conclude in Section 6.

2. E↵ective binary stellar yields

Eqn. 4 of Brinkman et al. (2019) defines the e↵ective binary
stellar yield, Ye↵ , as:

Ye↵ =
(1 � h)Ysingle + h(Yprim + hYseci)

1 + hhqi (1)

where Yprim is the net yield of the primary, hYseci is the
average net yield of the secondary with consideration to
the assumed birth distribution of secondaries, Ysingle is the
net yield of a single star with equivalent mass and single-
stellar evolution to the primary, h is the binary fraction
relevant to the primary mass, and hqi is the average value
of the mass ratio q = Msec/Mprim with consideration to the
assumed birth distribution of secondary masses.

The is equation naturally conserves the mass of star
forming material, and – assuming the same initial mass
function for single stars and primaries – can be initialised
with the same frequency and weighting as a single star of
the same mass. This allows a GCE code to treat a table
of e↵ective binary stellar yields as if they were a table of
single yields. All that remains, then, is the proper definition
of each term.

The birth distribution of secondary masses is commonly
assumed to be flat in q between 0 and 1, implying that
hqi= 0.5. Usage of a more complicated distribution is triv-
ial, although the distribution assumed for q must also be

propagated into the calculation of hYseci. In this work, we
assume that the distribution of secondary masses is flat in
q, but it is worth considering the e↵ect of the upper and
lower bounds on this distribution.

The binary yields currently available are for a very sim-
ple evolution channel: stable mass transfer from an evolved
donor 2 onto a companion star treated as a point mass (we
will assume later that this is a main sequence star). How-
ever, not all Roche-filling giants will undergo stable mass
transfer. Many of these interacting stars will instead un-
dergo unstable mass transfer leading to a common envelope
resulting in either a merger with its companion or a signif-
icant shortening of the orbital period which is followed by
further episodes of mass transfer. [TODO: find some proper
bounds and citations for q related to this; my intuition on
this seems to be o↵.] Farmer et al. (2023) and Brinkman
et al. (2023) keep q fixed values of q when initiating their
binaries (0.7 and 0.9, respectively) to avoid this issue en-
tirely, but of course in nature a wide range of secondary
masses are possible. For this reason, it is of interest to see
what e↵ect increasing the upper limit the lower permissible
level of q has on the e↵ective binary yields.

This allows us to probe two di↵erent (bad) assumptions
we might make. Maintaining the bounds on q from 0 to 1
with a binary fraction representative of nature is equiva-
lent to assuming that this simple evolution channel is rep-
resentative of all binaries. On the other hand, raising the
lower limit (while reducing the overall binary fraction ac-
cordingly) is instead saying we’re better o↵ treating these
unknown binary stellar evolution channels as singles. Ide-
ally, of course, we would instead break down the ‘binary’
term in the e↵ective yield calculation further into multiple
terms accounting for di↵erent binary evolution channels,
with consideration to the birth distributions of the binary
systems that undergo these channels. We will discuss what
this might look like in more detail later in this section, but
for now the kinds of yield-sets required to make these com-
putations (merger models, for example) are not available.

the binary fraction h, motivated by observational stud-
ies such as Sana et al. (2012) and Moe & Di Stefano (2017),
is widely accepted to be a function of the birth mass of the
primary. Any dependence on the metallicity is uncertain
and typically ignored, but could be trivially accounted for
within this formalism as the metallicity of the underlying
stellar models will always be known. The question of how
close two stars need to be in order to be considered a bi-
nary is a relevant one that is not often addressed in such
discussions. We treat the issue of di↵erent orbital separa-
tions separately later in this section, and for now simply
state that, ideally, the fraction used would be relevant to
binaries interacting in the manner modelled by underlying
modelling work that produced the relevant yield sets.

The binary yield terms Yprim and Ysec are where addi-
tional physics can start to be introduced in order to form
a better model stellar population. Ysingle is simply the yield
of a single star with equivalent mass and, ideally, physical
ingredients such as the nuclear network and stellar mixing
used. A more realistic model for this term might include a
mix of rotating and non-rotating stellar models with con-
sideration to some assumed birth distribution of the spins.
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To the authors knowledge, this sort of spin-weighted mixed
single population has never been implemented into GCE
modelling, likely due to the lack of a reliable birth-spin
distribution and the scarcity of yields from rotating stel-
lar models. There have been works looking at the e↵ect of
changing the rotation rate of the entire single population
however, finding [something] [TODO: actually find some of
these works; Tejpreet do you know any?]

Consideration of Yprim and Ysec allow the introduction of
mass transfer e�ciencies, allowing binary stellar physics to
be probed without the need for incorporating yields from
additional detailed stellar evolution calculations, but their
calculation is more complicated. We shall deal first with
Yprim.

Farmer et al. (2023) provide a breakdown of the primary
yields in terms of the mass-loss mechanism, rather than
simply providing the total yield for the star. That is, the
yield of a given isotope for a given initial mass is:

Yprim = Ywinds + YRLOF + YSN (2)

where Ywinds, YRLOF, and YSN are the net yields from stel-
lar winds, RLOF, and supernova respectively, under the
assumption of completely non-conservative mass transfer.
Farmer et al. (2023) report the absolute yield and the por-
tion of that yield that was initially present within the star,
leaving the trivial computation of the net yield to the user.
This is an excellent way of reporting binary yields that we
strongly recommend future works copy, as it opens the door
both to building a well-motivated model for the yield of
the binary and to fine control of mass transfer e�ciency
assumptions when calculating those binary yields.

In both Farmer et al. (2023) and Brinkman et al. (2023),
the yields computed assume completely non-conservative
mass transfer, meaning none of the mass lost from the pri-
mary goes to the companion; it all goes directly to the in-
terstellar medium. This assumption is made for pragmatic
reasons; in reality at least some of the material will ac-
crete onto the companion star; in the case of RLOF, this
fraction is expected to be close to unity. Fortunately, there
is no need to maintain the assumption of non-conservative
mass transfer when constructing the yield of the binary as
a whole. The net yield of the primary can be written:

Yprim = (1��winds)·Ywinds+(1��RLOF)·YRLOF+(1��SN)·YSN (3)

where � is they mass transfer e�ciency (or conserva-
tiveness). A value of one implies fully conservative mass
transfer, where all material is transferred to the compan-
ion, while a value of zero implies no material is transferred,
and all material from that mass transfer mechanism is lost
directly to the interstellar medium (ISM). �winds will typ-
ically be low . 0.1) for most binaries, with possible ex-
ceptions being systems where wind-RLOF (Abate et al.
2013), which involves the funneling of slow wind through
the Roche lobe, becomes relevant. In contrast, values of
�RLOF close to unity should well-approximate most scenarios
involving stable mass transfer through RLOF. �SN should
be essentially 0 for all scenarios; it is di�cult to imagine
how a stellar companion would accrete significant amounts
of material either during or after a supernova explosion due
to the very high ejecta velocities inherent to these phenom-
ena.

Using equation 3, the net yield from the primary can be
modified to account for the desired accretion e�ciency for
each mass transfer mechanism despite – in fact, because of
– the fact that these e�ciencies were not included as part
of the underlying stellar models. This is done without any
loss of consistency, because as far as the underlying stellar
models are concerned, the material was removed, and they
are utterly indi↵erent to what happened to the material.
This will not be generally true; for more complex binary
evolution channels, such as those where multiple episodes
of mass transfer take place, the mass transfer e�ciency has
evolutionary implications that can a↵ect the stellar yields
in ways that cannot be decoupled from the underlying as-
sumptions in the model.

Finally, we come to the secondary yield. If we consider
that the most common evolution phase for the accretor is
a main sequence companion that was born with mass less
than the initial mass of the primary, then we are able to
construct a fairly well-motivated model for this yield. In a
main sequence star, the core and envelope are highly cou-
pled; for our purposes, this means that changes to the mass
of the envelope leads to adjustments to the rest of the star –
including the core – on a thermal timescale, a short amount
of time compared to the (nuclear) evolutionary timescale of
the main sequence. After the mass transfer has occurred
and the star has adjusted, the star is expected to evolve in
a fashion similar to a star born with an initial mass equal
to its mass after accretion. In that case, the yield for a sec-
ondary star born with initial mass M2 that accreted mass
�M would be equal to the yield of a star born with initial
mass M2 + �M.

The net mass of a given isotope deposited on the sec-
ondary, Ydump, can be written in terms of the reported net
yields of the primary and the chosen � values:

Ydump = �winds · Ywinds + �RLOF · YRLOF + �SN · YSN. (4)

Note the net yield deposited, Ydump, may be negative in
the event that material depleted relative to the initial abun-
dance is being accreted onto the secondary. This portion of
the net primary yield that is deposited on the secondary has
significance under the assumption that the initial composi-
tion for the primary and secondary is the same, as it allows
tracking of any net depletion and/or enhancement conferred
to the secondary. Without this tracking, the user is forced
to implicitly assume accretion of birth-composition mate-
rial. We instead assume that any material accreted onto the
secondary will not undergo nuclear processing other than
radioactive decay, and will be lost at the end of the secon-
daries life. In this way, the full net yields from the primary
still make their way into the interstellar medium, but they
do so as part of the secondary yield term, which has implica-
tions for the time at which these yields are released. Given
the convective nature of massive stellar envelopes on the
main sequence and the fact that this main sequence star will
inevitably go through its own evolved stages, where changes
to envelope from previous accretion abundances may a↵ect
its evolved nucleosynthesis, this assumption is far from per-
fect. A more detailed, realistic treatment would need to rely
upon a dedicated set of models of the stellar structure and
evolution of the secondary post-mass transfer.

Under the assumptions that the secondary has identi-
cal birth composition to the primary and that the material
accreted onto the secondary is not altered changed after
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To the authors knowledge, this sort of spin-weighted mixed
single population has never been implemented into GCE
modelling, likely due to the lack of a reliable birth-spin
distribution and the scarcity of yields from rotating stel-
lar models. There have been works looking at the e↵ect of
changing the rotation rate of the entire single population
however, finding [something] [TODO: actually find some of
these works; Tejpreet do you know any?]

Consideration of Yprim and Ysec allow the introduction of
mass transfer e�ciencies, allowing binary stellar physics to
be probed without the need for incorporating yields from
additional detailed stellar evolution calculations, but their
calculation is more complicated. We shall deal first with
Yprim.

Farmer et al. (2023) provide a breakdown of the primary
yields in terms of the mass-loss mechanism, rather than
simply providing the total yield for the star. That is, the
yield of a given isotope for a given initial mass is:

Yprim = Ywinds + YRLOF + YSN (2)

where Ywinds, YRLOF, and YSN are the net yields from stel-
lar winds, RLOF, and supernova respectively, under the
assumption of completely non-conservative mass transfer.
Farmer et al. (2023) report the absolute yield and the por-
tion of that yield that was initially present within the star,
leaving the trivial computation of the net yield to the user.
This is an excellent way of reporting binary yields that we
strongly recommend future works copy, as it opens the door
both to building a well-motivated model for the yield of
the binary and to fine control of mass transfer e�ciency
assumptions when calculating those binary yields.

In both Farmer et al. (2023) and Brinkman et al. (2023),
the yields computed assume completely non-conservative
mass transfer, meaning none of the mass lost from the pri-
mary goes to the companion; it all goes directly to the in-
terstellar medium. This assumption is made for pragmatic
reasons; in reality at least some of the material will ac-
crete onto the companion star; in the case of RLOF, this
fraction is expected to be close to unity. Fortunately, there
is no need to maintain the assumption of non-conservative
mass transfer when constructing the yield of the binary as
a whole. The net yield of the primary can be written:

Yprim = (1��winds)·Ywinds+(1��RLOF)·YRLOF+(1��SN)·YSN (3)

where � is they mass transfer e�ciency (or conserva-
tiveness). A value of one implies fully conservative mass
transfer, where all material is transferred to the compan-
ion, while a value of zero implies no material is transferred,
and all material from that mass transfer mechanism is lost
directly to the interstellar medium (ISM). �winds will typ-
ically be low . 0.1) for most binaries, with possible ex-
ceptions being systems where wind-RLOF (Abate et al.
2013), which involves the funneling of slow wind through
the Roche lobe, becomes relevant. In contrast, values of
�RLOF close to unity should well-approximate most scenarios
involving stable mass transfer through RLOF. �SN should
be essentially 0 for all scenarios; it is di�cult to imagine
how a stellar companion would accrete significant amounts
of material either during or after a supernova explosion due
to the very high ejecta velocities inherent to these phenom-
ena.

Using equation 3, the net yield from the primary can be
modified to account for the desired accretion e�ciency for
each mass transfer mechanism despite – in fact, because of
– the fact that these e�ciencies were not included as part
of the underlying stellar models. This is done without any
loss of consistency, because as far as the underlying stellar
models are concerned, the material was removed, and they
are utterly indi↵erent to what happened to the material.
This will not be generally true; for more complex binary
evolution channels, such as those where multiple episodes
of mass transfer take place, the mass transfer e�ciency has
evolutionary implications that can a↵ect the stellar yields
in ways that cannot be decoupled from the underlying as-
sumptions in the model.

Finally, we come to the secondary yield. If we consider
that the most common evolution phase for the accretor is
a main sequence companion that was born with mass less
than the initial mass of the primary, then we are able to
construct a fairly well-motivated model for this yield. In a
main sequence star, the core and envelope are highly cou-
pled; for our purposes, this means that changes to the mass
of the envelope leads to adjustments to the rest of the star –
including the core – on a thermal timescale, a short amount
of time compared to the (nuclear) evolutionary timescale of
the main sequence. After the mass transfer has occurred
and the star has adjusted, the star is expected to evolve in
a fashion similar to a star born with an initial mass equal
to its mass after accretion. In that case, the yield for a sec-
ondary star born with initial mass M2 that accreted mass
�M would be equal to the yield of a star born with initial
mass M2 + �M.

The net mass of a given isotope deposited on the sec-
ondary, Ydump, can be written in terms of the reported net
yields of the primary and the chosen � values:

Ydump = �winds · Ywinds + �RLOF · YRLOF + �SN · YSN. (4)

Note the net yield deposited, Ydump, may be negative in
the event that material depleted relative to the initial abun-
dance is being accreted onto the secondary. This portion of
the net primary yield that is deposited on the secondary has
significance under the assumption that the initial composi-
tion for the primary and secondary is the same, as it allows
tracking of any net depletion and/or enhancement conferred
to the secondary. Without this tracking, the user is forced
to implicitly assume accretion of birth-composition mate-
rial. We instead assume that any material accreted onto the
secondary will not undergo nuclear processing other than
radioactive decay, and will be lost at the end of the secon-
daries life. In this way, the full net yields from the primary
still make their way into the interstellar medium, but they
do so as part of the secondary yield term, which has implica-
tions for the time at which these yields are released. Given
the convective nature of massive stellar envelopes on the
main sequence and the fact that this main sequence star will
inevitably go through its own evolved stages, where changes
to envelope from previous accretion abundances may a↵ect
its evolved nucleosynthesis, this assumption is far from per-
fect. A more detailed, realistic treatment would need to rely
upon a dedicated set of models of the stellar structure and
evolution of the secondary post-mass transfer.

Under the assumptions that the secondary has identi-
cal birth composition to the primary and that the material
accreted onto the secondary is not altered changed after
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accretion or significantly a↵ect the evolution in any way
other than the material’s existence, the net yield for the
secondary can then be written as:

Ysec = Y M2+�M
single + Ydump, (5)

where Y M2+�M
single is the net yield from a single star of mass

equal to the post-transfer mass of the secondary.
Careful choice of the yield set used Ysingle o↵ers the

chance to improve the physicality of the model. The most
important e↵ect, that of the increase in mass, has already
been addressed, but the secondary e↵ects related to com-
position and spin-up can potentially both be explored here.

Yields sets of rotating stellar models such as (Limongi
& Chie� 2018) or (Brinkman et al. 2021) could be used
to study the e↵ect of accounting for binary spin up. One
might attempt to account for changes in the metallicity of
the star by selecting a yield set appropriate to the updated
metallicity. However, changes to the bulk metallicity are
likely to be small for the cases of stable mass transfer we
are considering and the implicit assumption of full stellar
mixing of the accreted material will not valid for most stars.
Further, attempting to account for these secondary e↵ects
will likely necessitate using di↵erent yield sets from di↵erent
simulations. This in turn will inevitably result in use of a
yield set calculated with what may be quite di↵erent physics
to the binary yield set, leading to significant breaks in self
consistency that may outweigh the benefits of accounting
for these kinds of second-order e↵ects on the secondary’s
evolution.

In its most basic form, Ydump is simply the fraction of
the reported net yield of the primary that was accreted by
the secondary, and ensures that these net yields are still
released at the end of the secondaries life. However, this is
patently false for radioisotopes.

Even assuming no processing, radioisotopes will nat-
urally decay during their time on the secondary, shifting
the balance of the corrective Ydump term. The e↵ects of this
can, however, be quickly calculated provided that the time
from accretion to the point of mass loss on the secondary
is known. Which finally brings us to the question of stellar
lifetimes, and how we can approximate their modification
in the event of mass accretion.

We are interested in two times relative to the birth of the
system: the lifetime of the secondary relative to the birth of
the system, tsec, and the time between when the secondary
accretes material, tacc, and when the secondary releases that
material to the ISM. The age of the primary at the end of
its life can be approximated as the time of accretion onto
the secondary to within a few Myr, due to the short post-
main sequence lifetimes of massive stars. Similarly, the age
of the secondary at the end of its life can be approximated
as the release time of the secondary. A more accurate timing
could in principle be calculated using times of peak mass
loss through winds and RLOF should this information be
provided, (see Section 3), but this can be expected to have
negligible impact on the binary’s total yield to the ISM.

In order to calculate the age of the (presumed) main
sequence secondary, consider two e↵ects of the mass accre-
tion. The first will be an increased burn rate in the core,
reducing the secondary’s remaining life, and the second will
be structural adjustment, increasing the core mass of the
secondary. This second term is important because, at the

time of accretion, some amount of H has already been pro-
cessed into He; it is this mass of processed material that
should be conserved during the age calculation. This is then
compared with the total mass of the He core after accretion
to estimate the remaining stellar lifetime.

The fraction of the secondary’s initial lifespan that has
expired at the time of mass accretion is tacc/tsingle, where
tsingle is the lifetime of a single star with the same initial
mass of the secondary. This can be then be used to estimate
the mass fraction of H already processed at the time of
accretion:

MH,proc@tacc = Mc,single@M2 · tacc/tsingle, (6)

where Mc,single is the final H-depleted core mass of a sin-
gle star with the same initial mass of the secondary. This
implicitly assumes a constant core growth rate throughout
the star’s life, which is obviously untrue. A more sophisti-
cated approach would be to use detailed stellar evolution
tracks to extract the actual amount of H processed at the
time of mass accretion, but this would increase the compu-
tational e↵ort – and burden of reporting to binary stellar
modellers – significantly, for only relatively minor improve-
ment on a corrective term.

Under the same assumption, the mass of processed H
MH,proc@tacc can then be used in conjunction with the final
H-depleted core mass of a single star with mass equal to
M2 + �M, Mc,single@M2+�M, to get the remaining lifetime of
the secondary:

tsec � tacc = MH,proc@tacc/Mc,single@M2+�M, (7)

from which the final release time of the secondary tsec
can be calculated trivially. The remaining lifetime of the
secondary after mass accretion, tsec � tacc, is the same as
the amount of time any accreted radioisotopes will have to
decay before they, and their decay products, are released
by the secondary. Henceforth, we will refer to this as the
decay time.

With knowledge of the amount of each radioisotope ac-
creted onto the secondary and the decay time, it is now
possible to calculate the state of Ydump at the time of the
secondary’s release accounting for radioactive decay. We ac-
complish this by using the radioactivedecay3 (Malins &
Lemoine 2022) Python package, which can rapidly calcu-
late the final quantities of each isotope accounting for full
radioactive decays. We use it in its default configuration,
which includes decay information for 1252 radionuclides
from 97 elements taken from Eckerman & Endo (2008)
along with atomic abundances[TODO: atomic abundances?
why do we/they care about those?] from the atomic mass
data center (AMDC)4.

Only the radioisotopes which have yields calculated by
the underlying binary stellar models are relevant for initial-
ising the calculation, and likewise we only care about de-
cay products that correspond to isotopes which have yields
calculated by the underlying binary stellar models. Decay
products that are not among the isotopes considered by the
underlying stellar models (e.g., meta-stable states of certain
isotopes) are compounded into their relevant daughter iso-
tope(s) or discarded, although it should be noted that the

3
https://pypi.org/project/radioactivedecay/

4
https://www-nds.iaea.org/amdc/
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accretion or significantly a↵ect the evolution in any way
other than the material’s existence, the net yield for the
secondary can then be written as:

Ysec = Y M2+�M
single + Ydump, (5)

where Y M2+�M
single is the net yield from a single star of mass

equal to the post-transfer mass of the secondary.
Careful choice of the yield set used Ysingle o↵ers the

chance to improve the physicality of the model. The most
important e↵ect, that of the increase in mass, has already
been addressed, but the secondary e↵ects related to com-
position and spin-up can potentially both be explored here.

Yields sets of rotating stellar models such as (Limongi
& Chie� 2018) or (Brinkman et al. 2021) could be used
to study the e↵ect of accounting for binary spin up. One
might attempt to account for changes in the metallicity of
the star by selecting a yield set appropriate to the updated
metallicity. However, changes to the bulk metallicity are
likely to be small for the cases of stable mass transfer we
are considering and the implicit assumption of full stellar
mixing of the accreted material will not valid for most stars.
Further, attempting to account for these secondary e↵ects
will likely necessitate using di↵erent yield sets from di↵erent
simulations. This in turn will inevitably result in use of a
yield set calculated with what may be quite di↵erent physics
to the binary yield set, leading to significant breaks in self
consistency that may outweigh the benefits of accounting
for these kinds of second-order e↵ects on the secondary’s
evolution.

In its most basic form, Ydump is simply the fraction of
the reported net yield of the primary that was accreted by
the secondary, and ensures that these net yields are still
released at the end of the secondaries life. However, this is
patently false for radioisotopes.

Even assuming no processing, radioisotopes will nat-
urally decay during their time on the secondary, shifting
the balance of the corrective Ydump term. The e↵ects of this
can, however, be quickly calculated provided that the time
from accretion to the point of mass loss on the secondary
is known. Which finally brings us to the question of stellar
lifetimes, and how we can approximate their modification
in the event of mass accretion.

We are interested in two times relative to the birth of the
system: the lifetime of the secondary relative to the birth of
the system, tsec, and the time between when the secondary
accretes material, tacc, and when the secondary releases that
material to the ISM. The age of the primary at the end of
its life can be approximated as the time of accretion onto
the secondary to within a few Myr, due to the short post-
main sequence lifetimes of massive stars. Similarly, the age
of the secondary at the end of its life can be approximated
as the release time of the secondary. A more accurate timing
could in principle be calculated using times of peak mass
loss through winds and RLOF should this information be
provided, (see Section 3), but this can be expected to have
negligible impact on the binary’s total yield to the ISM.

In order to calculate the age of the (presumed) main
sequence secondary, consider two e↵ects of the mass accre-
tion. The first will be an increased burn rate in the core,
reducing the secondary’s remaining life, and the second will
be structural adjustment, increasing the core mass of the
secondary. This second term is important because, at the

time of accretion, some amount of H has already been pro-
cessed into He; it is this mass of processed material that
should be conserved during the age calculation. This is then
compared with the total mass of the He core after accretion
to estimate the remaining stellar lifetime.

The fraction of the secondary’s initial lifespan that has
expired at the time of mass accretion is tacc/tsingle, where
tsingle is the lifetime of a single star with the same initial
mass of the secondary. This can be then be used to estimate
the mass fraction of H already processed at the time of
accretion:

MH,proc@tacc = Mc,single@M2 · tacc/tsingle, (6)

where Mc,single is the final H-depleted core mass of a sin-
gle star with the same initial mass of the secondary. This
implicitly assumes a constant core growth rate throughout
the star’s life, which is obviously untrue. A more sophisti-
cated approach would be to use detailed stellar evolution
tracks to extract the actual amount of H processed at the
time of mass accretion, but this would increase the compu-
tational e↵ort – and burden of reporting to binary stellar
modellers – significantly, for only relatively minor improve-
ment on a corrective term.

Under the same assumption, the mass of processed H
MH,proc@tacc can then be used in conjunction with the final
H-depleted core mass of a single star with mass equal to
M2 + �M, Mc,single@M2+�M, to get the remaining lifetime of
the secondary:

tsec � tacc = MH,proc@tacc/Mc,single@M2+�M, (7)

from which the final release time of the secondary tsec
can be calculated trivially. The remaining lifetime of the
secondary after mass accretion, tsec � tacc, is the same as
the amount of time any accreted radioisotopes will have to
decay before they, and their decay products, are released
by the secondary. Henceforth, we will refer to this as the
decay time.

With knowledge of the amount of each radioisotope ac-
creted onto the secondary and the decay time, it is now
possible to calculate the state of Ydump at the time of the
secondary’s release accounting for radioactive decay. We ac-
complish this by using the radioactivedecay3 (Malins &
Lemoine 2022) Python package, which can rapidly calcu-
late the final quantities of each isotope accounting for full
radioactive decays. We use it in its default configuration,
which includes decay information for 1252 radionuclides
from 97 elements taken from Eckerman & Endo (2008)
along with atomic abundances[TODO: atomic abundances?
why do we/they care about those?] from the atomic mass
data center (AMDC)4.

Only the radioisotopes which have yields calculated by
the underlying binary stellar models are relevant for initial-
ising the calculation, and likewise we only care about de-
cay products that correspond to isotopes which have yields
calculated by the underlying binary stellar models. Decay
products that are not among the isotopes considered by the
underlying stellar models (e.g., meta-stable states of certain
isotopes) are compounded into their relevant daughter iso-
tope(s) or discarded, although it should be noted that the

3
https://pypi.org/project/radioactivedecay/

4
https://www-nds.iaea.org/amdc/
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accretion or significantly a↵ect the evolution in any way
other than the material’s existence, the net yield for the
secondary can then be written as:

Ysec = Y M2+�M
single + Ydump, (5)

where Y M2+�M
single is the net yield from a single star of mass

equal to the post-transfer mass of the secondary.
Careful choice of the yield set used Ysingle o↵ers the

chance to improve the physicality of the model. The most
important e↵ect, that of the increase in mass, has already
been addressed, but the secondary e↵ects related to com-
position and spin-up can potentially both be explored here.

Yields sets of rotating stellar models such as (Limongi
& Chie� 2018) or (Brinkman et al. 2021) could be used
to study the e↵ect of accounting for binary spin up. One
might attempt to account for changes in the metallicity of
the star by selecting a yield set appropriate to the updated
metallicity. However, changes to the bulk metallicity are
likely to be small for the cases of stable mass transfer we
are considering and the implicit assumption of full stellar
mixing of the accreted material will not valid for most stars.
Further, attempting to account for these secondary e↵ects
will likely necessitate using di↵erent yield sets from di↵erent
simulations. This in turn will inevitably result in use of a
yield set calculated with what may be quite di↵erent physics
to the binary yield set, leading to significant breaks in self
consistency that may outweigh the benefits of accounting
for these kinds of second-order e↵ects on the secondary’s
evolution.

In its most basic form, Ydump is simply the fraction of
the reported net yield of the primary that was accreted by
the secondary, and ensures that these net yields are still
released at the end of the secondaries life. However, this is
patently false for radioisotopes.

Even assuming no processing, radioisotopes will nat-
urally decay during their time on the secondary, shifting
the balance of the corrective Ydump term. The e↵ects of this
can, however, be quickly calculated provided that the time
from accretion to the point of mass loss on the secondary
is known. Which finally brings us to the question of stellar
lifetimes, and how we can approximate their modification
in the event of mass accretion.

We are interested in two times relative to the birth of the
system: the lifetime of the secondary relative to the birth of
the system, tsec, and the time between when the secondary
accretes material, tacc, and when the secondary releases that
material to the ISM. The age of the primary at the end of
its life can be approximated as the time of accretion onto
the secondary to within a few Myr, due to the short post-
main sequence lifetimes of massive stars. Similarly, the age
of the secondary at the end of its life can be approximated
as the release time of the secondary. A more accurate timing
could in principle be calculated using times of peak mass
loss through winds and RLOF should this information be
provided, (see Section 3), but this can be expected to have
negligible impact on the binary’s total yield to the ISM.

In order to calculate the age of the (presumed) main
sequence secondary, consider two e↵ects of the mass accre-
tion. The first will be an increased burn rate in the core,
reducing the secondary’s remaining life, and the second will
be structural adjustment, increasing the core mass of the
secondary. This second term is important because, at the

time of accretion, some amount of H has already been pro-
cessed into He; it is this mass of processed material that
should be conserved during the age calculation. This is then
compared with the total mass of the He core after accretion
to estimate the remaining stellar lifetime.

The fraction of the secondary’s initial lifespan that has
expired at the time of mass accretion is tacc/tsingle, where
tsingle is the lifetime of a single star with the same initial
mass of the secondary. This can be then be used to estimate
the mass fraction of H already processed at the time of
accretion:

MH,proc@tacc = Mc,single@M2 · tacc/tsingle, (6)

where Mc,single is the final H-depleted core mass of a sin-
gle star with the same initial mass of the secondary. This
implicitly assumes a constant core growth rate throughout
the star’s life, which is obviously untrue. A more sophisti-
cated approach would be to use detailed stellar evolution
tracks to extract the actual amount of H processed at the
time of mass accretion, but this would increase the compu-
tational e↵ort – and burden of reporting to binary stellar
modellers – significantly, for only relatively minor improve-
ment on a corrective term.

Under the same assumption, the mass of processed H
MH,proc@tacc can then be used in conjunction with the final
H-depleted core mass of a single star with mass equal to
M2 + �M, Mc,single@M2+�M, to get the remaining lifetime of
the secondary:

tsec � tacc = MH,proc@tacc/Mc,single@M2+�M, (7)

from which the final release time of the secondary tsec
can be calculated trivially. The remaining lifetime of the
secondary after mass accretion, tsec � tacc, is the same as
the amount of time any accreted radioisotopes will have to
decay before they, and their decay products, are released
by the secondary. Henceforth, we will refer to this as the
decay time.

With knowledge of the amount of each radioisotope ac-
creted onto the secondary and the decay time, it is now
possible to calculate the state of Ydump at the time of the
secondary’s release accounting for radioactive decay. We ac-
complish this by using the radioactivedecay3 (Malins &
Lemoine 2022) Python package, which can rapidly calcu-
late the final quantities of each isotope accounting for full
radioactive decays. We use it in its default configuration,
which includes decay information for 1252 radionuclides
from 97 elements taken from Eckerman & Endo (2008)
along with atomic abundances[TODO: atomic abundances?
why do we/they care about those?] from the atomic mass
data center (AMDC)4.

Only the radioisotopes which have yields calculated by
the underlying binary stellar models are relevant for initial-
ising the calculation, and likewise we only care about de-
cay products that correspond to isotopes which have yields
calculated by the underlying binary stellar models. Decay
products that are not among the isotopes considered by the
underlying stellar models (e.g., meta-stable states of certain
isotopes) are compounded into their relevant daughter iso-
tope(s) or discarded, although it should be noted that the
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https://pypi.org/project/radioactivedecay/
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stars allow for better motivated, and therefore hopefully
more accurate, GCE models, but this kind of modelling
can provide valuable feedback to binary stellar physics in
the same way it has done to single stellar models.

In this work, we lay out a framework for the calculation
of ‘e↵ective binary stellar yields’, a concept introduced in
(Brinkman et al. 2019) to allow the inclusion of mixed pop-
ulations of binary and single stars in existing GCE codes.
These e↵ective binary stellar yields can be treated by GCE
codes as if they were simply single stellar yields, and can be
rapidly recalculated using di↵erent assumptions about bi-
nary birth distributions and mass transfer e�ciency factors
during stellar winds, RLOF, and supernovae. Using yields
from Farmer et al. (2023), we demonstrate the e↵ect that
varying mass transfer e�ciencies and binary fractions has
on e↵ective binary stellar yields. We also demonstrate the
accuracy and limitations of these yields by comparing with
a more realistic population formed of many individual bi-
nary systems. We also provide a check-list to guide future
binary stellar modellers in the outputs needed to maximise
the usefulness of their yield calculations.

The code available for producing both the e↵ective bi-
nary stellar yields and the populations of individual binary
systems, as well as a set of pre-computed, machine-readable
tables of e↵ective binary stellar yields computed using the
yields of Farmer et al. (2023) under di↵erent binary assump-
tions.

In Section ??, we describe the calculation of the e↵ec-
tive binary stellar yields. In Section 4, we illustrate and
discuss the e↵ective yields computed using binary yields
from Farmer et al. (2023), with comparison to a population
of individual binaries. In Section 5, we o↵er a check list to
guide future binary modelling works to improve functional-
ity with GCE calculations, and conclude in Section 6.

2. E↵ective binary stellar yields

Eqn. 4 of Brinkman et al. (2019) defines the e↵ective binary
stellar yield, Ye↵ , as:

Ye↵ =
(1 � h)Ysingle + h(Yprim + hYseci)

1 + hhqi (1)

where Yprim is the net yield of the primary, hYseci is the
average net yield of the secondary with consideration to
the assumed birth distribution of secondaries, Ysingle is the
net yield of a single star with equivalent mass and single-
stellar evolution to the primary, h is the binary fraction
relevant to the primary mass, and hqi is the average value
of the mass ratio q = Msec/Mprim with consideration to the
assumed birth distribution of secondary masses.

The is equation naturally conserves the mass of star
forming material, and – assuming the same initial mass
function for single stars and primaries – can be initialised
with the same frequency and weighting as a single star of
the same mass. This allows a GCE code to treat a table
of e↵ective binary stellar yields as if they were a table of
single yields. All that remains, then, is the proper definition
of each term.

The birth distribution of secondary masses is commonly
assumed to be flat in q between 0 and 1, implying that
hqi= 0.5. Usage of a more complicated distribution is triv-
ial, although the distribution assumed for q must also be

propagated into the calculation of hYseci. In this work, we
assume that the distribution of secondary masses is flat in
q, but it is worth considering the e↵ect of the upper and
lower bounds on this distribution.

The binary yields currently available are for a very sim-
ple evolution channel: stable mass transfer from an evolved
donor 2 onto a companion star treated as a point mass (we
will assume later that this is a main sequence star). How-
ever, not all Roche-filling giants will undergo stable mass
transfer. Many of these interacting stars will instead un-
dergo unstable mass transfer leading to a common envelope
resulting in either a merger with its companion or a signif-
icant shortening of the orbital period which is followed by
further episodes of mass transfer. [TODO: find some proper
bounds and citations for q related to this; my intuition on
this seems to be o↵.] Farmer et al. (2023) and Brinkman
et al. (2023) keep q fixed values of q when initiating their
binaries (0.7 and 0.9, respectively) to avoid this issue en-
tirely, but of course in nature a wide range of secondary
masses are possible. For this reason, it is of interest to see
what e↵ect increasing the upper limit the lower permissible
level of q has on the e↵ective binary yields.

This allows us to probe two di↵erent (bad) assumptions
we might make. Maintaining the bounds on q from 0 to 1
with a binary fraction representative of nature is equiva-
lent to assuming that this simple evolution channel is rep-
resentative of all binaries. On the other hand, raising the
lower limit (while reducing the overall binary fraction ac-
cordingly) is instead saying we’re better o↵ treating these
unknown binary stellar evolution channels as singles. Ide-
ally, of course, we would instead break down the ‘binary’
term in the e↵ective yield calculation further into multiple
terms accounting for di↵erent binary evolution channels,
with consideration to the birth distributions of the binary
systems that undergo these channels. We will discuss what
this might look like in more detail later in this section, but
for now the kinds of yield-sets required to make these com-
putations (merger models, for example) are not available.

the binary fraction h, motivated by observational stud-
ies such as Sana et al. (2012) and Moe & Di Stefano (2017),
is widely accepted to be a function of the birth mass of the
primary. Any dependence on the metallicity is uncertain
and typically ignored, but could be trivially accounted for
within this formalism as the metallicity of the underlying
stellar models will always be known. The question of how
close two stars need to be in order to be considered a bi-
nary is a relevant one that is not often addressed in such
discussions. We treat the issue of di↵erent orbital separa-
tions separately later in this section, and for now simply
state that, ideally, the fraction used would be relevant to
binaries interacting in the manner modelled by underlying
modelling work that produced the relevant yield sets.

The binary yield terms Yprim and Ysec are where addi-
tional physics can start to be introduced in order to form
a better model stellar population. Ysingle is simply the yield
of a single star with equivalent mass and, ideally, physical
ingredients such as the nuclear network and stellar mixing
used. A more realistic model for this term might include a
mix of rotating and non-rotating stellar models with con-
sideration to some assumed birth distribution of the spins.

2
We note that Brinkman et al. (2023) provide some simulations

where mass transfer through RLOF occurs while the primary is

on the main sequence.
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To the authors knowledge, this sort of spin-weighted mixed
single population has never been implemented into GCE
modelling, likely due to the lack of a reliable birth-spin
distribution and the scarcity of yields from rotating stel-
lar models. There have been works looking at the e↵ect of
changing the rotation rate of the entire single population
however, finding [something] [TODO: actually find some of
these works; Tejpreet do you know any?]

Consideration of Yprim and Ysec allow the introduction of
mass transfer e�ciencies, allowing binary stellar physics to
be probed without the need for incorporating yields from
additional detailed stellar evolution calculations, but their
calculation is more complicated. We shall deal first with
Yprim.

Farmer et al. (2023) provide a breakdown of the primary
yields in terms of the mass-loss mechanism, rather than
simply providing the total yield for the star. That is, the
yield of a given isotope for a given initial mass is:

Yprim = Ywinds + YRLOF + YSN (2)

where Ywinds, YRLOF, and YSN are the net yields from stel-
lar winds, RLOF, and supernova respectively, under the
assumption of completely non-conservative mass transfer.
Farmer et al. (2023) report the absolute yield and the por-
tion of that yield that was initially present within the star,
leaving the trivial computation of the net yield to the user.
This is an excellent way of reporting binary yields that we
strongly recommend future works copy, as it opens the door
both to building a well-motivated model for the yield of
the binary and to fine control of mass transfer e�ciency
assumptions when calculating those binary yields.

In both Farmer et al. (2023) and Brinkman et al. (2023),
the yields computed assume completely non-conservative
mass transfer, meaning none of the mass lost from the pri-
mary goes to the companion; it all goes directly to the in-
terstellar medium. This assumption is made for pragmatic
reasons; in reality at least some of the material will ac-
crete onto the companion star; in the case of RLOF, this
fraction is expected to be close to unity. Fortunately, there
is no need to maintain the assumption of non-conservative
mass transfer when constructing the yield of the binary as
a whole. The net yield of the primary can be written:

Yprim = (1��winds)·Ywinds+(1��RLOF)·YRLOF+(1��SN)·YSN (3)

where � is they mass transfer e�ciency (or conserva-
tiveness). A value of one implies fully conservative mass
transfer, where all material is transferred to the compan-
ion, while a value of zero implies no material is transferred,
and all material from that mass transfer mechanism is lost
directly to the interstellar medium (ISM). �winds will typ-
ically be low . 0.1) for most binaries, with possible ex-
ceptions being systems where wind-RLOF (Abate et al.
2013), which involves the funneling of slow wind through
the Roche lobe, becomes relevant. In contrast, values of
�RLOF close to unity should well-approximate most scenarios
involving stable mass transfer through RLOF. �SN should
be essentially 0 for all scenarios; it is di�cult to imagine
how a stellar companion would accrete significant amounts
of material either during or after a supernova explosion due
to the very high ejecta velocities inherent to these phenom-
ena.

Using equation 3, the net yield from the primary can be
modified to account for the desired accretion e�ciency for
each mass transfer mechanism despite – in fact, because of
– the fact that these e�ciencies were not included as part
of the underlying stellar models. This is done without any
loss of consistency, because as far as the underlying stellar
models are concerned, the material was removed, and they
are utterly indi↵erent to what happened to the material.
This will not be generally true; for more complex binary
evolution channels, such as those where multiple episodes
of mass transfer take place, the mass transfer e�ciency has
evolutionary implications that can a↵ect the stellar yields
in ways that cannot be decoupled from the underlying as-
sumptions in the model.

Finally, we come to the secondary yield. If we consider
that the most common evolution phase for the accretor is
a main sequence companion that was born with mass less
than the initial mass of the primary, then we are able to
construct a fairly well-motivated model for this yield. In a
main sequence star, the core and envelope are highly cou-
pled; for our purposes, this means that changes to the mass
of the envelope leads to adjustments to the rest of the star –
including the core – on a thermal timescale, a short amount
of time compared to the (nuclear) evolutionary timescale of
the main sequence. After the mass transfer has occurred
and the star has adjusted, the star is expected to evolve in
a fashion similar to a star born with an initial mass equal
to its mass after accretion. In that case, the yield for a sec-
ondary star born with initial mass M2 that accreted mass
�M would be equal to the yield of a star born with initial
mass M2 + �M.

The net mass of a given isotope deposited on the sec-
ondary, Ydump, can be written in terms of the reported net
yields of the primary and the chosen � values:

Ydump = �winds · Ywinds + �RLOF · YRLOF + �SN · YSN. (4)

Note the net yield deposited, Ydump, may be negative in
the event that material depleted relative to the initial abun-
dance is being accreted onto the secondary. This portion of
the net primary yield that is deposited on the secondary has
significance under the assumption that the initial composi-
tion for the primary and secondary is the same, as it allows
tracking of any net depletion and/or enhancement conferred
to the secondary. Without this tracking, the user is forced
to implicitly assume accretion of birth-composition mate-
rial. We instead assume that any material accreted onto the
secondary will not undergo nuclear processing other than
radioactive decay, and will be lost at the end of the secon-
daries life. In this way, the full net yields from the primary
still make their way into the interstellar medium, but they
do so as part of the secondary yield term, which has implica-
tions for the time at which these yields are released. Given
the convective nature of massive stellar envelopes on the
main sequence and the fact that this main sequence star will
inevitably go through its own evolved stages, where changes
to envelope from previous accretion abundances may a↵ect
its evolved nucleosynthesis, this assumption is far from per-
fect. A more detailed, realistic treatment would need to rely
upon a dedicated set of models of the stellar structure and
evolution of the secondary post-mass transfer.

Under the assumptions that the secondary has identi-
cal birth composition to the primary and that the material
accreted onto the secondary is not altered changed after
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stars allow for better motivated, and therefore hopefully
more accurate, GCE models, but this kind of modelling
can provide valuable feedback to binary stellar physics in
the same way it has done to single stellar models.

In this work, we lay out a framework for the calculation
of ‘e↵ective binary stellar yields’, a concept introduced in
(Brinkman et al. 2019) to allow the inclusion of mixed pop-
ulations of binary and single stars in existing GCE codes.
These e↵ective binary stellar yields can be treated by GCE
codes as if they were simply single stellar yields, and can be
rapidly recalculated using di↵erent assumptions about bi-
nary birth distributions and mass transfer e�ciency factors
during stellar winds, RLOF, and supernovae. Using yields
from Farmer et al. (2023), we demonstrate the e↵ect that
varying mass transfer e�ciencies and binary fractions has
on e↵ective binary stellar yields. We also demonstrate the
accuracy and limitations of these yields by comparing with
a more realistic population formed of many individual bi-
nary systems. We also provide a check-list to guide future
binary stellar modellers in the outputs needed to maximise
the usefulness of their yield calculations.

The code available for producing both the e↵ective bi-
nary stellar yields and the populations of individual binary
systems, as well as a set of pre-computed, machine-readable
tables of e↵ective binary stellar yields computed using the
yields of Farmer et al. (2023) under di↵erent binary assump-
tions.

In Section ??, we describe the calculation of the e↵ec-
tive binary stellar yields. In Section 4, we illustrate and
discuss the e↵ective yields computed using binary yields
from Farmer et al. (2023), with comparison to a population
of individual binaries. In Section 5, we o↵er a check list to
guide future binary modelling works to improve functional-
ity with GCE calculations, and conclude in Section 6.

2. E↵ective binary stellar yields

Eqn. 4 of Brinkman et al. (2019) defines the e↵ective binary
stellar yield, Ye↵ , as:

Ye↵ =
(1 � h)Ysingle + h(Yprim + hYseci)

1 + hhqi (1)

where Yprim is the net yield of the primary, hYseci is the
average net yield of the secondary with consideration to
the assumed birth distribution of secondaries, Ysingle is the
net yield of a single star with equivalent mass and single-
stellar evolution to the primary, h is the binary fraction
relevant to the primary mass, and hqi is the average value
of the mass ratio q = Msec/Mprim with consideration to the
assumed birth distribution of secondary masses.

The is equation naturally conserves the mass of star
forming material, and – assuming the same initial mass
function for single stars and primaries – can be initialised
with the same frequency and weighting as a single star of
the same mass. This allows a GCE code to treat a table
of e↵ective binary stellar yields as if they were a table of
single yields. All that remains, then, is the proper definition
of each term.

The birth distribution of secondary masses is commonly
assumed to be flat in q between 0 and 1, implying that
hqi= 0.5. Usage of a more complicated distribution is triv-
ial, although the distribution assumed for q must also be

propagated into the calculation of hYseci. In this work, we
assume that the distribution of secondary masses is flat in
q, but it is worth considering the e↵ect of the upper and
lower bounds on this distribution.

The binary yields currently available are for a very sim-
ple evolution channel: stable mass transfer from an evolved
donor 2 onto a companion star treated as a point mass (we
will assume later that this is a main sequence star). How-
ever, not all Roche-filling giants will undergo stable mass
transfer. Many of these interacting stars will instead un-
dergo unstable mass transfer leading to a common envelope
resulting in either a merger with its companion or a signif-
icant shortening of the orbital period which is followed by
further episodes of mass transfer. [TODO: find some proper
bounds and citations for q related to this; my intuition on
this seems to be o↵.] Farmer et al. (2023) and Brinkman
et al. (2023) keep q fixed values of q when initiating their
binaries (0.7 and 0.9, respectively) to avoid this issue en-
tirely, but of course in nature a wide range of secondary
masses are possible. For this reason, it is of interest to see
what e↵ect increasing the upper limit the lower permissible
level of q has on the e↵ective binary yields.

This allows us to probe two di↵erent (bad) assumptions
we might make. Maintaining the bounds on q from 0 to 1
with a binary fraction representative of nature is equiva-
lent to assuming that this simple evolution channel is rep-
resentative of all binaries. On the other hand, raising the
lower limit (while reducing the overall binary fraction ac-
cordingly) is instead saying we’re better o↵ treating these
unknown binary stellar evolution channels as singles. Ide-
ally, of course, we would instead break down the ‘binary’
term in the e↵ective yield calculation further into multiple
terms accounting for di↵erent binary evolution channels,
with consideration to the birth distributions of the binary
systems that undergo these channels. We will discuss what
this might look like in more detail later in this section, but
for now the kinds of yield-sets required to make these com-
putations (merger models, for example) are not available.

the binary fraction h, motivated by observational stud-
ies such as Sana et al. (2012) and Moe & Di Stefano (2017),
is widely accepted to be a function of the birth mass of the
primary. Any dependence on the metallicity is uncertain
and typically ignored, but could be trivially accounted for
within this formalism as the metallicity of the underlying
stellar models will always be known. The question of how
close two stars need to be in order to be considered a bi-
nary is a relevant one that is not often addressed in such
discussions. We treat the issue of di↵erent orbital separa-
tions separately later in this section, and for now simply
state that, ideally, the fraction used would be relevant to
binaries interacting in the manner modelled by underlying
modelling work that produced the relevant yield sets.

The binary yield terms Yprim and Ysec are where addi-
tional physics can start to be introduced in order to form
a better model stellar population. Ysingle is simply the yield
of a single star with equivalent mass and, ideally, physical
ingredients such as the nuclear network and stellar mixing
used. A more realistic model for this term might include a
mix of rotating and non-rotating stellar models with con-
sideration to some assumed birth distribution of the spins.

2
We note that Brinkman et al. (2023) provide some simulations

where mass transfer through RLOF occurs while the primary is

on the main sequence.

Article number, page 2 of 9

Alex Kemp and Tejpreet Kaur: Binary stellar evolution in galactic chemical evolution calculations

To the authors knowledge, this sort of spin-weighted mixed
single population has never been implemented into GCE
modelling, likely due to the lack of a reliable birth-spin
distribution and the scarcity of yields from rotating stel-
lar models. There have been works looking at the e↵ect of
changing the rotation rate of the entire single population
however, finding [something] [TODO: actually find some of
these works; Tejpreet do you know any?]

Consideration of Yprim and Ysec allow the introduction of
mass transfer e�ciencies, allowing binary stellar physics to
be probed without the need for incorporating yields from
additional detailed stellar evolution calculations, but their
calculation is more complicated. We shall deal first with
Yprim.

Farmer et al. (2023) provide a breakdown of the primary
yields in terms of the mass-loss mechanism, rather than
simply providing the total yield for the star. That is, the
yield of a given isotope for a given initial mass is:

Yprim = Ywinds + YRLOF + YSN (2)

where Ywinds, YRLOF, and YSN are the net yields from stel-
lar winds, RLOF, and supernova respectively, under the
assumption of completely non-conservative mass transfer.
Farmer et al. (2023) report the absolute yield and the por-
tion of that yield that was initially present within the star,
leaving the trivial computation of the net yield to the user.
This is an excellent way of reporting binary yields that we
strongly recommend future works copy, as it opens the door
both to building a well-motivated model for the yield of
the binary and to fine control of mass transfer e�ciency
assumptions when calculating those binary yields.

In both Farmer et al. (2023) and Brinkman et al. (2023),
the yields computed assume completely non-conservative
mass transfer, meaning none of the mass lost from the pri-
mary goes to the companion; it all goes directly to the in-
terstellar medium. This assumption is made for pragmatic
reasons; in reality at least some of the material will ac-
crete onto the companion star; in the case of RLOF, this
fraction is expected to be close to unity. Fortunately, there
is no need to maintain the assumption of non-conservative
mass transfer when constructing the yield of the binary as
a whole. The net yield of the primary can be written:

Yprim = (1��winds)·Ywinds+(1��RLOF)·YRLOF+(1��SN)·YSN (3)

where � is they mass transfer e�ciency (or conserva-
tiveness). A value of one implies fully conservative mass
transfer, where all material is transferred to the compan-
ion, while a value of zero implies no material is transferred,
and all material from that mass transfer mechanism is lost
directly to the interstellar medium (ISM). �winds will typ-
ically be low . 0.1) for most binaries, with possible ex-
ceptions being systems where wind-RLOF (Abate et al.
2013), which involves the funneling of slow wind through
the Roche lobe, becomes relevant. In contrast, values of
�RLOF close to unity should well-approximate most scenarios
involving stable mass transfer through RLOF. �SN should
be essentially 0 for all scenarios; it is di�cult to imagine
how a stellar companion would accrete significant amounts
of material either during or after a supernova explosion due
to the very high ejecta velocities inherent to these phenom-
ena.

Using equation 3, the net yield from the primary can be
modified to account for the desired accretion e�ciency for
each mass transfer mechanism despite – in fact, because of
– the fact that these e�ciencies were not included as part
of the underlying stellar models. This is done without any
loss of consistency, because as far as the underlying stellar
models are concerned, the material was removed, and they
are utterly indi↵erent to what happened to the material.
This will not be generally true; for more complex binary
evolution channels, such as those where multiple episodes
of mass transfer take place, the mass transfer e�ciency has
evolutionary implications that can a↵ect the stellar yields
in ways that cannot be decoupled from the underlying as-
sumptions in the model.

Finally, we come to the secondary yield. If we consider
that the most common evolution phase for the accretor is
a main sequence companion that was born with mass less
than the initial mass of the primary, then we are able to
construct a fairly well-motivated model for this yield. In a
main sequence star, the core and envelope are highly cou-
pled; for our purposes, this means that changes to the mass
of the envelope leads to adjustments to the rest of the star –
including the core – on a thermal timescale, a short amount
of time compared to the (nuclear) evolutionary timescale of
the main sequence. After the mass transfer has occurred
and the star has adjusted, the star is expected to evolve in
a fashion similar to a star born with an initial mass equal
to its mass after accretion. In that case, the yield for a sec-
ondary star born with initial mass M2 that accreted mass
�M would be equal to the yield of a star born with initial
mass M2 + �M.

The net mass of a given isotope deposited on the sec-
ondary, Ydump, can be written in terms of the reported net
yields of the primary and the chosen � values:

Ydump = �winds · Ywinds + �RLOF · YRLOF + �SN · YSN. (4)

Note the net yield deposited, Ydump, may be negative in
the event that material depleted relative to the initial abun-
dance is being accreted onto the secondary. This portion of
the net primary yield that is deposited on the secondary has
significance under the assumption that the initial composi-
tion for the primary and secondary is the same, as it allows
tracking of any net depletion and/or enhancement conferred
to the secondary. Without this tracking, the user is forced
to implicitly assume accretion of birth-composition mate-
rial. We instead assume that any material accreted onto the
secondary will not undergo nuclear processing other than
radioactive decay, and will be lost at the end of the secon-
daries life. In this way, the full net yields from the primary
still make their way into the interstellar medium, but they
do so as part of the secondary yield term, which has implica-
tions for the time at which these yields are released. Given
the convective nature of massive stellar envelopes on the
main sequence and the fact that this main sequence star will
inevitably go through its own evolved stages, where changes
to envelope from previous accretion abundances may a↵ect
its evolved nucleosynthesis, this assumption is far from per-
fect. A more detailed, realistic treatment would need to rely
upon a dedicated set of models of the stellar structure and
evolution of the secondary post-mass transfer.

Under the assumptions that the secondary has identi-
cal birth composition to the primary and that the material
accreted onto the secondary is not altered changed after
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Varying binary fraction (h)
(βRLOF= 1, βwind= 0.1, βcc= 0)

Varying mass transfer efficiency (βRLOF)
(h= 0.5, βwind= 0, βcc= 0)

Effective net yields: O-16
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Varying binary fraction (h)
(βRLOF= 1, βwind= 0.1, βcc= 0)

Varying mass transfer efficiency (βRLOF)
(h= 0.5, βwind= 0, βcc= 0)

Effective net yields: Mg-24  
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quantities of these decay products are always very small
relative to the abundance of the daughter isotope already
extant.

In this way we can calculate the secondary yield for
an individual binary accounting for evolution changes due
to its mass gain, modifications to its yield stemming from
the specifics of the material it accreted, and the radioac-
tive decay of the radioisotopes present within said mate-
rial. In this treatment, the calculation ultimately depends
on both the primary mass (determining the amount of mass
transferred) and the secondary mass. Thus, this calculation
must be done for a range of initial secondary masses for
each primary mass, and then the results averaged with con-
sideration to the previously discussed birth distribution of
secondary masses to arrive at hYseci.

Note that, as the e↵ective binary stellar yield is in-
tended to replace a yield of single yields, it does not provide
any information about any time o↵set between the primary
and secondary yield releases (although that time is used
to achieve more accurate radioisotope yields). Indeed, the
time o↵set will be a function of the secondary mass, and
so is poorly defined for the e↵ective yield. This time o↵set
will also only be a few tens of Myr, and so is unlikely to
be important for many use cases. Nonetheless, an average
secondary release time can easily be calculated for a given
primary mass and we provide functions for its calculation.

2.1. Towards a more complete treatment of binary stellar

evolution

The above is a detailed explanation of a simple simple recipe
for calculating the e↵ective binary yield when considering
the simplest possible binary stellar evolution channel: sta-
ble mass transfer from an evolved star to a main sequence
companion. This channel is highly relevant in the context of
the detailed binary stellar yields currently available, but it
is to be hoped that stellar yields from more complex binary
evolutionary channels will be available in the future. In this
section, we address how these yields can be incorporated
into the binary e↵ective yields formalism, and thereyby in-
cluded in galactic chemical evolution calculations.

The binary e↵ective yield is essentially a mixing formula
for the yields from binary and single star systems; to include
more complex binary (or even single) evolution channels can
simply be achieved by adding complexity to the binary (or
single) terms, essentially subdividing the binary (or single)
population.

For example, suppose that yields from three binary stel-
lar evolution channels are available: channels A, B, and
C. These channels could be, for example, the previously
discussed case of mass transfer from an evolved donor to
a main sequence companion, yields for post-merger stars
that merged on the main sequence, and yields for post-
merger stars that merged after the main sequence. Then
these yields could be included in the e↵ective binary yield
calculation as:

Ye↵ =
(1 � h)Ysingle + h( fAYA + fBYB + fCYC)

1 + hhqi , (8)

where f is the fraction of a purely binary stellar pop-
ulation that undergoes the relevant channel and Y is the
total yield of the binary. In some cases, such as where

each evolution channel corresponds to di↵erent orbital pe-
riod calculations, the fractions can be calculated by making
an assumption about the birth distribution of orbital sep-
arations. For more complicated evolution channels such as
stellar mergers, the evolution channel fractions can be ob-
tained from binary population synthesis calculations, which
can also easily calculate the mass-dependence. Recall that,
just as in equation 1, the e↵ective binary yield calculation
is computed for each primary mass. There is, therefore, no
restriction to mass-independence for any of the weighting
factors that control the mix, such as the binary fraction h or
the evolution channel fractions f , or even assumed distribu-
tion of q. Finally, another option is to treat the fractions as
free parameters, and solve for them by statistically compar-
ing the resulting GCE calculations to observations of stellar
abundances.

This method of subdividing the binary population into
di↵erent evolution channels can, of course, also be applied
to the single yield term. Suppose that a modeller wishes
to employ a mixed population of rotating and non-rotating
single star models, and several di↵erent rotations are avail-
able. Then their inclusion is as simple as assigning fractions
to each weighted yield; in this case, the weighting fractions
could either be drawn from observations of stellar rotation
in stars of the relevant mass regime or solved for as free
parameters by comparing the predicted GCE yields with
observational data.

In this way, the calculation of the e↵ective yield can be-
come arbitrarily complex, inclusive of a wide range of dif-
ferent stellar yields from di↵erent evolution channels. Both
approaches for obtaining the crucial fractions that deter-
mine the weightings for the di↵erent evolution channels –
drawing them from binary population synthesis or solving
for them as free parameters – have the potential to pro-
vide valuable feedback to evolutionary modellers. Further,
it should be expected that by including this more complete
picture of stellar evolution in our galactic chemical evolu-
tion calculations, we can better understand the limits of
our current knowledge and, hopefully, better the wealth of
observational data available to us.

****************

3. A check-list for binary stellar modellers

In section 2 we discussed some detail how detailed yields
from binary stellar evolution calculations can be included
into GCE. However, the ability to take full advantage of
what these detailed calculations can provide is limited by
the kinds of output that is reported, and the completeness
of such a mixed-population GCE model will of course be
limited by the mass, metallicity, and evolution channels for
which these yields have been computed, as well as inheriting
all of the – often unexplored – modelling uncertainty from
the underlying stellar models used to compute those yields.
In this section, we will first outline a check-list for mod-
ellers reporting outputs for binary stellar channels, before
proceeding to outline where additional additional compu-
tations for di↵erent evolution channels are most needed.

3.1. Output checklist for binary stellar modellers

The full check-list we summarise here for convenience, and
discuss each point subsequently.
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stars allow for better motivated, and therefore hopefully
more accurate, GCE models, but this kind of modelling
can provide valuable feedback to binary stellar physics in
the same way it has done to single stellar models.

In this work, we lay out a framework for the calculation
of ‘e↵ective binary stellar yields’, a concept introduced in
(Brinkman et al. 2019) to allow the inclusion of mixed pop-
ulations of binary and single stars in existing GCE codes.
These e↵ective binary stellar yields can be treated by GCE
codes as if they were simply single stellar yields, and can be
rapidly recalculated using di↵erent assumptions about bi-
nary birth distributions and mass transfer e�ciency factors
during stellar winds, RLOF, and supernovae. Using yields
from Farmer et al. (2023), we demonstrate the e↵ect that
varying mass transfer e�ciencies and binary fractions has
on e↵ective binary stellar yields. We also demonstrate the
accuracy and limitations of these yields by comparing with
a more realistic population formed of many individual bi-
nary systems. We also provide a check-list to guide future
binary stellar modellers in the outputs needed to maximise
the usefulness of their yield calculations.

The code available for producing both the e↵ective bi-
nary stellar yields and the populations of individual binary
systems, as well as a set of pre-computed, machine-readable
tables of e↵ective binary stellar yields computed using the
yields of Farmer et al. (2023) under di↵erent binary assump-
tions.

In Section ??, we describe the calculation of the e↵ec-
tive binary stellar yields. In Section 4, we illustrate and
discuss the e↵ective yields computed using binary yields
from Farmer et al. (2023), with comparison to a population
of individual binaries. In Section 5, we o↵er a check list to
guide future binary modelling works to improve functional-
ity with GCE calculations, and conclude in Section 6.

2. E↵ective binary stellar yields

Eqn. 4 of Brinkman et al. (2019) defines the e↵ective binary
stellar yield, Ye↵ , as:

Ye↵ =
(1 � h)Ysingle + h(Yprim + hYseci)

1 + hhqi (1)

where Yprim is the net yield of the primary, hYseci is the
average net yield of the secondary with consideration to
the assumed birth distribution of secondaries, Ysingle is the
net yield of a single star with equivalent mass and single-
stellar evolution to the primary, h is the binary fraction
relevant to the primary mass, and hqi is the average value
of the mass ratio q = Msec/Mprim with consideration to the
assumed birth distribution of secondary masses.

The is equation naturally conserves the mass of star
forming material, and – assuming the same initial mass
function for single stars and primaries – can be initialised
with the same frequency and weighting as a single star of
the same mass. This allows a GCE code to treat a table
of e↵ective binary stellar yields as if they were a table of
single yields. All that remains, then, is the proper definition
of each term.

The birth distribution of secondary masses is commonly
assumed to be flat in q between 0 and 1, implying that
hqi= 0.5. Usage of a more complicated distribution is triv-
ial, although the distribution assumed for q must also be

propagated into the calculation of hYseci. In this work, we
assume that the distribution of secondary masses is flat in
q, but it is worth considering the e↵ect of the upper and
lower bounds on this distribution.

The binary yields currently available are for a very sim-
ple evolution channel: stable mass transfer from an evolved
donor 2 onto a companion star treated as a point mass (we
will assume later that this is a main sequence star). How-
ever, not all Roche-filling giants will undergo stable mass
transfer. Many of these interacting stars will instead un-
dergo unstable mass transfer leading to a common envelope
resulting in either a merger with its companion or a signif-
icant shortening of the orbital period which is followed by
further episodes of mass transfer. [TODO: find some proper
bounds and citations for q related to this; my intuition on
this seems to be o↵.] Farmer et al. (2023) and Brinkman
et al. (2023) keep q fixed values of q when initiating their
binaries (0.7 and 0.9, respectively) to avoid this issue en-
tirely, but of course in nature a wide range of secondary
masses are possible. For this reason, it is of interest to see
what e↵ect increasing the upper limit the lower permissible
level of q has on the e↵ective binary yields.

This allows us to probe two di↵erent (bad) assumptions
we might make. Maintaining the bounds on q from 0 to 1
with a binary fraction representative of nature is equiva-
lent to assuming that this simple evolution channel is rep-
resentative of all binaries. On the other hand, raising the
lower limit (while reducing the overall binary fraction ac-
cordingly) is instead saying we’re better o↵ treating these
unknown binary stellar evolution channels as singles. Ide-
ally, of course, we would instead break down the ‘binary’
term in the e↵ective yield calculation further into multiple
terms accounting for di↵erent binary evolution channels,
with consideration to the birth distributions of the binary
systems that undergo these channels. We will discuss what
this might look like in more detail later in this section, but
for now the kinds of yield-sets required to make these com-
putations (merger models, for example) are not available.

the binary fraction h, motivated by observational stud-
ies such as Sana et al. (2012) and Moe & Di Stefano (2017),
is widely accepted to be a function of the birth mass of the
primary. Any dependence on the metallicity is uncertain
and typically ignored, but could be trivially accounted for
within this formalism as the metallicity of the underlying
stellar models will always be known. The question of how
close two stars need to be in order to be considered a bi-
nary is a relevant one that is not often addressed in such
discussions. We treat the issue of di↵erent orbital separa-
tions separately later in this section, and for now simply
state that, ideally, the fraction used would be relevant to
binaries interacting in the manner modelled by underlying
modelling work that produced the relevant yield sets.

The binary yield terms Yprim and Ysec are where addi-
tional physics can start to be introduced in order to form
a better model stellar population. Ysingle is simply the yield
of a single star with equivalent mass and, ideally, physical
ingredients such as the nuclear network and stellar mixing
used. A more realistic model for this term might include a
mix of rotating and non-rotating stellar models with con-
sideration to some assumed birth distribution of the spins.

2
We note that Brinkman et al. (2023) provide some simulations

where mass transfer through RLOF occurs while the primary is

on the main sequence.
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• Here Y is the yield of each channel (A,B,C, etc)
• f are the relative weights of each channel (∑f = 1)

Could also be broken up into different rotation rates, for example

The effective yield framework is versatile
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1. Binary stellar yields for low-mass stars. 

2. Binary stellar yields at low metallicities.

3. Better isotopic coverage: nuclear post-processing

4. More and more realistic supernovae

5. Mass gainers: stable mass transfer and stellar mergers.

…
ESA/Webb, NASA, CSA, M. Barlow (UCL), N. Cox (ACRI-ST), R. Wesson (Cardiff University)

Additional modelling work needed
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1. Report the amount of mass lost through winds, RLOF, and 
supernovae. Ideally also report relevant timings.

2. Calculate and report supernova yields.

3. Provide an equivalent set of single stellar yields.
For extra credit, also include a set of rotating models J.

4. Publish the data in a machine-readable format through 
publicly accessible archives. 

Output checklist for binary stellar modellers
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• The effective binary stellar yield provides a framework for including 
yields from mixed single/binary stellar populations in existing 
galactic chemical evolution codes.

• Current binary stellar yields only cover a tiny portion of the binary 
parameter space -> more models needed!

• Priorities: low-mass stars, sub-solar metallicities, nuclear post-
processing, supernovae, mass gainers (e.g. mergers).

Concluding remarks
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