A recipe for using binary stellar yields in galactic chemical evolution calculations

> Alex Kemp (KU Leuven) Tejpreet Kaur (IIT Kanpur)

NPA XI

(and rotation)

Binary star parameters Primary mass

Secondary mass (q=primary mass / secondary mass)

 $15 \ M_{\odot}$

 $20 \ M_{\odot}$

Separation (Orbital period)

(and eccentricity)

Binary stellar yields (directly from detailed models)

Effective binary yields

 $Y_{\rm eff}$

Can be used as if they were single star yields of the same stellar mass!

h = binary fraction

$$\langle q \rangle$$
 = average value of M_2/M_2

Average secondary yield

$$= \frac{(1-h)Y_{\text{single}} + h(Y_{\text{prim}} + \langle Y_{\text{sec}} \rangle)}{1 + h \langle q \rangle}$$

Single Yield Primary yield

Calculating Y_{prim} and $\langle Y_{\text{sec}} \rangle$ considering β

Primary mass Secondary mass

 $Y_{\text{prim}} = (1 - \beta_{\text{winds}}) \cdot Y_{\text{winds}} + (1 - \beta_{\text{RLOF}}) \cdot Y_{\text{RLOF}} + (1 - \beta_{\text{SN}}) \cdot Y_{\text{SN}}$

Net yield transferred to the secondary:

 $Y_{\text{dump}} = \beta_{\text{winds}} \cdot Y_{\text{winds}} + \beta_{\text{RLOF}} \cdot Y_{\text{RLOF}} + \beta_{\text{SN}} \cdot Y_{\text{SN}}.$

Y_{dump}

Calculating Y_{prim} and $\langle Y_{\text{sec}} \rangle$ considering β

Accreted radioisotopes will continue to decay after they're accreted onto the secondary!

https://github.com/radioactivedecay/radioactivedecay

Secondary lifetime:

- Conserve core He mass at time of mass transfer.
- Account for increased core mass due to mass transfer.

https://www.pinterest.com/pin/432134526761460

Effective net yields: O-16

Varying binary fraction (h) $(\beta_{\text{RLOF}}=1, \beta_{\text{wind}}=0.1, \beta_{\text{cc}}=0)$

Varying mass transfer efficiency (β_{RLOF}) (h= 0.5, β_{wind} = 0, β_{cc} = 0)

Effective net yields: Mg-24

Varying binary fraction (h) $(\beta_{\text{RLOF}}=1, \beta_{\text{wind}}=0.1, \beta_{\text{cc}}=0)$ Varying mass transfer efficiency (β_{RLOF}) (h= 0.5, β_{wind} = 0, β_{cc} = 0)

The effective yield framework is versatile

- Here Y is the yield of each channel (A,B,C, etc)
- f are the relative weights of each channel ($\sum f = 1$)

$$Y_{\text{prim}} + \langle Y_{\text{sec}} \rangle$$
$$Y_{\text{eff}} = \frac{(1-h)Y_{\text{single}} + h(f_{\text{A}}Y_{\text{A}} + f_{\text{B}}Y_{\text{B}} + f_{\text{C}}Y_{\text{C}})}{1 + h\langle q \rangle}$$

Could also be broken up into different rotation rates, for example

Additional modelling work needed

...

1. Binary stellar yields for **low-mass stars.**

2. Binary stellar yields at low metallicities.

3. Better isotopic coverage: nuclear post-processing

4. More and more realistic **supernovae**

5. Mass gainers: stable mass transfer and stellar mergers.

Output checklist for binary stellar modellers

 Report the amount of mass lost through winds, RLOF, and supernovae. Ideally also report relevant timings.

2. Calculate and report supernova yields.

3. Provide **an equivalent set of single stellar yields.** For extra credit, also include a set of rotating models ③.

 Publish the data in a machine-readable format through publicly accessible archives.

Concluding remarks

- The effective binary stellar yield provides a framework for including yields from mixed single/binary stellar populations in existing galactic chemical evolution codes.
- Current binary stellar yields only cover a tiny portion of the binary parameter space -> more models needed!

 Priorities: low-mass stars, sub-solar metallicities, nuclear postprocessing, supernovae, mass gainers (e.g. mergers).