Influence of Density Dependence of Symmetry Energy on Astrophysical S-factor in Heavy-ion Fusion Reactions

G. Saxena

Department of Physics (H&S), Govt. Women Engineering College, Ajmer-305002, India

Nuclear Physics in Astrophysics XI (NPA-XI) conference Friday 13th September, 2024

Introduction

- The nuclear symmetry energy and its density dependence are instrumental in determining the properties of systems ranging from asymmetric nuclei to neutron stars and various other astrophysical phenomena.
- □ The neutron skin thickness in asymmetric nuclei is sensitive to the slope of symmetry energy (L_0) at the saturation density ($\rho_0 \sim 0.16 \text{ fm}^{-3}$).
- □ The values of $L_0 = 76 \sim 165$ MeV from Δr_{np} (²⁰⁸Pb) and $L_0 = 0 \sim 51$ MeV from Δr_{np} (⁴⁸Ca) have been deduced by using 207 non-relativistic and relativistic mean-field models.

- This discrepancy poses a challenge for nuclear theory, as current models struggle to fit the results from PREX-II and CREX simultaneously. It suggests that there might be more complexity in the nuclear symmetry energy and its density dependence than previously thought.
- One of the several alternative ways to investigate the density dependence of the symmetry energy or the neutron skin thickness is "Nuclear Reactions (Heavy-Ion Collisions)":
 - 1. Description: Heavy-ion collisions between neutron-rich nuclei at intermediate energies produce nuclear matter at densities and temperatures similar to those in astrophysical environments.
 - 2. Experiments:

Radioactive ion beam facilities (e.g., RIKEN, FRIB) can provide collisions of exotic neutron-rich isotopes. Heavy-ion collisions (e.g., at GANIL, GSI) can be used to extract information on the symmetry energy at supra-saturation densities.

Present Work in Nutshell

We study the sensitivity of density dependence of the symmetry energy to the sub-barrier fusion cross-sections and the resulting astrophysical *S*-factor for a few asymmetric nuclei.

G. Saxena [India]

Methodology

From the partial wave analysis of formal nuclear reaction theory results the following formula of the cross-section for two nuclei undergoing nuclear reaction

$$\sigma(E) = \frac{\pi}{k^2} \sum_{l=0}^{\infty} (2l+1) T_l(E)$$
(1)

where, $k = \frac{\sqrt{2\mu E}}{\hbar}$, μ being the reduced mass of the interacting nuclei and the transmission coefficient $T_l(E)$ for l^{th} partial wave is given by

$$T_{l}(E) = \exp(-\frac{2}{\hbar} \int_{r_{1}}^{r_{2}} \sqrt{2\mu[V_{eff}(r) - E]} dr)$$
(2)

within WKB approximation, where r_1 and r_2 are classical turning points, E is the energy in the centre of mass frame and $V_{eff}(r)$ is the effective barrier potential expressed as

$$V_{eff}(r) = V_n(r) + V_c(r) + \frac{l(l+1)\hbar^2}{2\mu r^2}$$
(3)

G. Saxena [India]

In our calculations, the double-folding model (DFM) is used to generate the nucleus–nucleus potential which reads as,

$$V_n(\mathbf{R}) = \int \int V_{NN}(|\mathbf{R} - \mathbf{r}_t + \mathbf{r}_\rho|)\rho_\rho(\mathbf{r}_\rho)\rho_t(\mathbf{r}_t)d\mathbf{r}_\rho d\mathbf{r}_t$$
(4)

 \mathbf{r}_{ρ} and \mathbf{r}_{t} are the radius vectors of two interacting points \mathbf{R} denotes the vector joining their centers of mass $\rho_{\rho}(\mathbf{r}_{\rho})$ and $\rho_{t}(\mathbf{r}_{t})$ stand for the target and projectile nuclear matter densities

The expression of the cross-section (Eq. 1) can be decomposed into the term that depends strongly on energy and another one that varies weakly with energy as,

$$\sigma(E) = E^{-1} exp(-2\pi\eta) S(E)$$
(5)

E is the center of mass energy of the reactants $\eta = \frac{Z_1 Z_2 e^2}{\hbar v}$ is the Sommmerfeld parameter $v = \sqrt{\frac{2E}{\mu}}$ denotes the relative velocity

G. Saxena [India]

Nuclear Physics in Astrophysics XI (NPA-XI) conference

5/15

Results from Skyrme parameters SLy4 and SkO

We first present our results in detail for SLy4 and SkO Skyrme effective interactions [56,57] which mainly differ in the behavior of the symmetry energy.

Table: Nuclear matter properties at the saturation density ρ_0 using the SLy4 and SkO effective interactions.

Model	ρ_0	ϵ_0	K ₀	<i>m</i> [*] ₀	J_0	L ₀	K _{sym,0}
SLy4	0.16	-15.97	229.9	0.69	32.0	45.94	-119.73
SkO	0.16	-15.84	223.3	0.90	32.0	79.14	-43.17

Table: Ground state Properties of some nuclei

Nucleus	Expt.	SLy4	SkO	Δr_{np}^{diff}
	BE/A r _p	BE/A r_p Δr_{np}	BE/A r_p Δr_{np}	
¹⁶ O	7.976 2.578	8.029 2.702 -0.023	7.406 2.694 -0.021	0.002
²⁴ O	7.040 -	7.208 2.762 0.479	6.950 2.760 0.628	0.149
⁴⁰ Ca	8.551 3.384	8.606 3.419 -0.047	8.397 3.401 -0.041	0.006
⁵⁴ Ca	8.247 -	8.311 3.534 0.350	8.267 3.509 0.466	0.116
⁶⁰ Ca	7.627 -	7.750 3.615 0.483	7.818 3.584 0.632	0.149
⁷⁸ Ni	8.238 -	8.253 3.925 0.310	8.254 3.929 0.451	0.141
¹²⁴ Sn	8.467 4.605	8.472 4.626 0.180	8.471 4.614 0.226	0.046
¹³² Sn	8.354 4.641	8.358 4.670 0.222	8.320 4.670 0.320	0.098

G. Saxena [India]

Nuclear Physics in Astrophysics XI (NPA-XI) conference

2024-09-13

Effect on potential and cross-section

- The SkO interaction associated with larger skin thickness yields smaller barrier heights and widths.
- The area of the barrier is determined by its height and width that governs the values of cross-section exponentially. Thus, small changes in the barrier parameters could significantly affect the cross-section and astrophysical S-factor.
- Due to the reduction in barrier height and width, the SkO interaction leads to a larger cross-section.
- □ The cross-section for ²⁴O+²⁴O is enhanced by three to four times due to increase in skin thickness by 0.15 fm for SkO in comparison with that of SLy4 interaction.
- □ For ¹³²Sn+¹³²Sn case, the cross-section enhances by two to three orders of magnitude due to an increase in neutron skin thickness by 0.10 fm.

Impact on Astrophysical S-factor

- We plot the ratio of the S-factor obtained for the SkO interaction to those for the SLy4 interaction.
- The rapid increase in the values of the S-factor in these nuclei for SkO force clearly suggests its sensitivity to the neutron skin thickness, which grows stronger with the increase in proton number.
- The S-factor increases by one order of magnitude for ⁵⁴Ca+⁵⁴Ca with the increase in skin thickness by 0.1 fm and a similar increase is observed for ¹²⁴Sn+¹²⁴Sn with the increase in skin thickness only by 0.05

S-factor by varying the neutron skin thickness

- □ We also calculate the cross-section and *S*-factor by varying the neutron skin thickness for ⁵⁴Ca+⁵⁴Ca and ¹²⁴Sn+¹²⁴Sn, which might be within the experimental reach.
- □ The different Skyrme models used are SLy4, SLy5, SLy6, SLy7, SkO, SIII, SkM, SkP, S255, SkI3, HFB9.
- RMF models used are NL3, NL3*, FSU-Gold, FSU-Garnet, DD-PC1, DD-PCX, DD-ME2, DD-MEa to DD-MEe.
- □ The overall decrease in the height, as well as the width of the barrier on increasing neutron skin thickness, is evident from the figure for both ${}^{54}Ca+{}^{54}Ca$ and ${}^{124}Sn+{}^{124}Sn$.
- □ The S-factor readily changes by an order of magnitude for ⁵⁴Ca and about two orders of magnitude for ¹²⁴Sn with an increase in neutron skin thickness.

G. Saxena [India]

2024-09-13

Conclusion

- □ We have performed the calculations of the cross-section for the sub-barrier fusion and astrophysical *S*-factor for several asymmetric nuclei.
- □ The double-folding model potentials required to compute cross-sections are obtained by folding nucleon-nucleon interactions with the density profiles for nucleons inside the nucleus obtained from mean-field models.
- □ The mean-field models employed are based on the non-relativistic Skyrme-type effective interactions and different variants of relativistic effective Lagrangian associated with a wide range of the symmetry energy slope parameter or the neutron skin thickness.
- □ The barrier parameters such as its height and width decrease with an increase in neutron skin thickness which leads to the enhancement of cross-section and astrophysical *S*-factor up to one or two orders of magnitude.
- □ The sensitivity of the cross-section or the *S*-factor to the neutron skin thickness grows stronger with the increase in the proton number.
- □ The precise measurement of sub-barrier fusion cross-section or astrophysical *S*-factor in asymmetric nuclei may provide an alternative probe to determine the neutron skin thickness or the slope parameter of the symmetry energy.

G. Saxena [India]

Acknowledgements

- I would like to express my gratitude to the following research group members:
 - Prof. B. K. Agrawal, SINP, India
 - Prof. Ushasi Datta, SINP, India
 - Dr. Sangeeta, CU, India
 - Dr. T. Ghosh, SINP, India
- □ I am deeply grateful to Prof. Nils Paar for his kind hospitality during my stay at the University of Zagreb, Croatia.
- Financial support from SERB (DST), Government of India, under ITS/2024/003332, and from the NPA-XI conference organizers, is gratefully acknowledged.

Thank you. Questions are welcome.

Nuclear Physics in Astrophysics XI (NPA-XI) conference

14/15

Figure: Cross-sections for the sub-barrier fusion of symmetric systems ${}^{16}O{+}^{16}O$ and ${}^{40}Ca{+}^{40}Ca$ as a function of energy in the center of mass frame (E_{cm}) calculated for different DFM potentials and density profiles.

G. Saxena [India]

Nuclear Physics in Astrophysics XI (NPA-XI) conference

2024-09-13