

Tracing the MW spiral arms with ²⁶Al: the role of novae in the 2D distribution of ²⁶Al

Arianna Vasini PhD student at University of Trieste In collaboration with E. Spitoni, F. Matteucci, G. Cescutti & M. Della Valle arianna.vasini@inaf.it Dresden 2024 - "Nuclear Physics in Astrophysics XI"

Introduction: Aim of the study

- What do we want to do?
- Why?

2D Chemical Evolution Model: Spitoni+19, 23, Vasini+22,+24

- Parameters and assumptions
- 2D results: SFR, novae and ²⁶Al

Conclusions

Arianna Vasini 18 Sep. 2024

Outline

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way ²⁶Al is a tracer of the star formation: lifetime of $\sim 1~Myr$, produced by massive stars

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way ²⁶Al is a tracer of the star formation: lifetime of $\sim 1~Myr$, produced by massive stars

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way

²⁶Al is a trac

Monthly Notices

ROYAL ASTRONOMICAL SOCIETY

MNRAS 517, 4256–4264 (2022) Advance Access publication 2022 October 21

Chemical evolution of ²⁶Al and ⁶⁰Fe in the Milky Way

A. Vasini,^{1,2} F. Matteucci^{1,2,3} and E. Spitoni^{4,5,6}

¹Dipartimento di Fisica, Sezione di Astronomia, Università di Trieste, via G.B. Tiepolo 11, I-34131 Trieste, Italy ²INAF Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, I-34131 Trieste, Italy ³INFN Sezione di Trieste, via Valerio 2, I-34134 Trieste, Italy ⁴Universitè Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Bd de l'Observatoire, CS 34229, F-06304 Nice Cedex 4, France ⁵Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Konkoly Thege Miklós út 15-17, H-1121 Budapest, Hungary ⁶Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark

Accepted 2022 May 19. Received 2022 May 19; in original form 2022 April 1

https://doi.org/10.1093/mnras/stac2981

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way ²⁶Al is a tracer of the star formation: lifetime of $\sim 1~Myr$, produced by massive stars Vasini+22:

Chemical Evolution model with 1D approximation

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way ²⁶Al is a tracer of the star formation: lifetime of $\sim 1~Myr$, produced by massive stars Vasini+22:

Chemical Evolution model with 1D approximation

Arianna Vasini 18 Sep. 2024

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way ²⁶Al is a tracer of the star formation: lifetime of $\sim 1 \ Myr$, produced by massive stars Vasini+22:

Chemical Evolution model with 1D approximation

Arianna Vasini 18 Sep. 2024

The scenario is too simplistic for ²⁶Al

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way ²⁶Al is a tracer of the star formation: lifetime of $\sim 1 \ Myr$, produced by massive stars

Vasini+22:

Chemical Evolution model with 1D approximation

The scenario is too simplistic for ²⁶Al

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way ²⁶Al is a tracer of the star formation: lifetime of $\sim 1~Myr$, produced by massive stars

Vasini+22:

Chemical Evolution model with 1D approximation

The scenario is too simplistic for ²⁶Al

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way $\frac{26}{10}$ is a tracer of the star formation. If a time of $\frac{1}{10}$ May produced by massive of

Vasini+22:

Chemical Evolution model with 1D approximation

²⁶Al is a tracer of the star formation: lifetime of $\sim 1~Myr$, produced by massive stars

→ The scenario is too simplistic for ²⁶Al

Introduction

We want to study in a **more detailed way** the distribution of ²⁶Al in the Milky Way

²⁶Al is a tracer of the star formation: lifetime of $\sim 1 Myr$, produced by massive stars Vasini+22:

Chemical Evolution model with 1D approximation

→ The scenario is too simplistic for ²⁶Al

Introduction

We want to study in a more detailed way the distribution of 26 Al in the Milky Way

²⁶Al is a tracer of the star formation: lifetime of $\sim 1 Myr$, produced by massive stars Vasini+22:

Chemical Evolution model with 1D approximation

→ The scenario is too simplistic for ²⁶Al

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way

²⁶Al is a tracer of the star formation: lifetime of $\sim 1 Myr$, produced by massive stars Vasini+22:

Chemical Evolution model with 1D approximation

→ The scenario is too simplistic for ²⁶Al

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way

²⁶Al is a tracer of the star formation: lifetime of $\sim 1 Myr$, produced by massive stars Vasini+22:

Chemical Evolution model with 1D approximation

→ The scenario is too simplistic for ²⁶Al

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way

²⁶Al is a tracer of the star formation: lifetime of $\sim 1 Myr$, produced by massive stars Vasini+22:

Chemical Evolution model with 1D approximation

→ The scenario is too simplistic for ²⁶Al

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way

²⁶Al is a tracer of the star formation: lifetime of $\sim 1 Myr$, produced by massive stars Vasini+22:

Chemical Evolution model with 1D approximation

→ The scenario is too simplistic for ²⁶Al

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way

²⁶Al is a tracer of the star formation: lifetime of $\sim 1 Myr$, produced by massive stars Vasini+22:

Chemical Evolution model with 1D approximation

→ The scenario is too simplistic for ²⁶Al

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way ²⁶Al is a tracer of the star formation: lifetime of $\sim 1 \ Myr$, produced by massive stars

Vasini+22:

Chemical Evolution model with 1D approximation

homogeneous mixing does not hold for Short Lived Radioisotopes: 2D model needed NPA

Arianna Vasini 18 Sep. 2024

The scenario is too simplistic for ²⁶Al

Introduction

Aim: why?

Spitoni+2019,+2023: <u>2D model can trace the alpha-element abundance oscillations in an annulus</u>

Arianna Vasini 18 Sep. 2024

Introduction

Aim: why?

Spitoni+2019,+2023: <u>2D model can trace the alpha-element abundance oscillations in an annulus</u>

How much the results of Vasini+2022 about ²⁶Al are affected by the choice of 1D over 2D model? →

Aim: why?

Spitoni+2019,+2023: <u>2D model can trace the alpha-element abundance oscillations in an annulus</u>

How much the results of Vasini+2022 about ²⁶Al are affected by the choice of 1D over 2D model? -

Massive stars are not the only astronomical production site of ²⁶Al

Nova systems contribute too: -delay for the formation of the white dwarf -delay for the cooling time

Nova systems do not trace the SFR

Aim: why?

Spitoni+2019,+2023: <u>2D model can trace the alpha-element abundance oscillations in an annulus</u>

How much the results of Vasini+2022 about ²⁶Al are affected by the choice of 1D over 2D model? -

Massive stars are not the only astronomical production site of ²⁶Al

Nova systems contribute too: -delay for the formation of the white dwarf -delay for the cooling time

How much the nova contribution affect the precision of the ²⁶Al SFR tracing?

Model: prescriptions from Vasini+22 and Spitoni+23

From Vasini+22:

Arianna Vasini 18 Sep. 2024

Model: prescriptions from Vasini+22 and Spitoni+23

From Vasini+22:

Schmidt - Kennicutt SFR + two infall law —

Arianna Vasini 18 Sep. 2024

Model: prescriptions from Vasini+22 and Spitoni+23

From Vasini+22:

- Schmidt Kennicutt SFR + two infall law —
- Kroupa+93 IMF _

Arianna Vasini 18 Sep. 2024

Model: prescriptions from Vasini+22 and Spitoni+23

From Vasini+22:

- Schmidt Kennicutt SFR + two infall law
- Kroupa+93 IMF _
- Pollution from —

Arianna Vasini 18 Sep. 2024

Model: prescriptions from Vasini+22 and Spitoni+23

Arianna Vasini 18 Sep. 2024

Model: prescriptions from Vasini+22 and Spitoni+23

Arianna Vasini 18 Sep. 2024

Model: prescriptions from Vasini+22 and Spitoni+23

Arianna Vasini 18 Sep. 2024

Model: prescriptions from Vasini+22 and Spitoni+23

From Spitoni+23:

- 2D model

Arianna Vasini 18 Sep. 2024

Model: prescriptions from Vasini+22 and Spitoni+23

From Spitoni+23:

- 2D model

1. Divide the annulus into 36 segments of 10° each

$\Sigma_{S}(R,t) \longrightarrow \Sigma_{S}(R,\phi,t)$

Arianna Vasini 18 Sep. 2024

Model: prescriptions from Vasini+22 and Spitoni+23

From Spitoni+23:

- 2D model

1. Divide the annulus into 36 segments of 10° each

$\Sigma_S(R,t) \longrightarrow \Sigma_S(R,\phi,t)$

2.Create a modulation function dependent on radius, azimuth and time-step

Model: prescriptions from Vasini+22 and Spitoni+23

From Spitoni+23:

- 2D model

1. Divide the annulus into 36 segments of 10° each

$\Sigma_S(R,t) \longrightarrow \Sigma_S(R,\phi,t)$

2.Create a modulation function dependent on radius, azimuth and time-step

3. Apply the modulation function to the SFR

$\psi(R,\phi,t) \longrightarrow \psi(R,t)M(\phi)$

Results

Results: SFR and nova rate distribution

Arianna Vasini 18 Sep. 2024

Conclusions

²⁶Al has a half-life of \sim 1 Myr and is produced by massive stars, therefore it is a star formation tracer We already estimated the ²⁶Al in the Galaxy with a 1D chemical evolution model in Vasini+22

Tested to nucleosynthesis models: M1 with novae, and M2 without novae

- Nova systems also produce ²⁶Al how much the nova contribution influence the tracing of the SFR?
- We adopted the 2D chemical evolution model from Spitoni+19,+23 and the prescription from Vasini+22 and

Conclusions

²⁶Al has a half-life of \sim 1 Myr and is produced by massive stars, therefore it is a star formation tracer We already estimated the ²⁶Al in the Galaxy with a 1D chemical evolution model in Vasini+22

Tested to nucleosynthesis models: M1 with novae, and M2 without novae

We found that:

- ²⁶AI distribution traces the spiral arms better in model M2

novae in the bulge produce 10 times more ²⁶AI (Izzo & Della Valle 2020)

- Nova systems also produce ²⁶Al how much the nova contribution influence the tracing of the SFR?
- We adopted the 2D chemical evolution model from Spitoni+19,+23 and the prescription from Vasini+22 and

- as expected, the nova distribution does not trace the spiral arms. The peaks of novae is in the SFR minima
- -In model M1 the peaks of ²⁶AI is \sim 33% higher than the minima, for model M2 they are \sim 126% of the minima
- None of the two models reproduce the ²⁶Al observed. Model M1 can reproduce the observations only if the

