

Nuclear Physics in Astrophysics XI

Lifetime measurement of 6.79 MeV state in ¹⁵O for nuclear astrophysics

Speaker: Elia Pilotto

September 2024

Introduction

CNO-cycle I (p,γ 13c 14_N 7.5 MeV $(e^{+}v)$ (p,γ) 1.2 MeV 7.4 MeV 10 min 13_N 150 $(,e^{+}v)$ 2.7 MeV (p, γ) 2 min 2.0 MeV Cycle 1 15_N 120 (p,α) 5.0 Mev **Reaction cross**

- Main energy production mechanism in stars larger than our Sun
- Equilibrium governed by the ¹⁴N(p,γ)¹⁵O reaction, the slowest of the cycle
- Gamow peak is at 10 30 keV, direct measurement stop at 90 keV
- **Sub-threshold resonance** dominates at astrophysically relevant energies and heavily impacts extrapolation
- Resonance width is directly correlated to lifetime of the state

Nuclear Physics in Astrophysics XI

State of the art of the reaction

Nuclear Physics in Astrophysics XI

Dresden – September 2024

Technique and Setup

- Reaction: ³He(¹⁶O,¹⁵O)⁴He @ 50 MeV
- Advanced GAmma Tracking Array (AGATA)
- Annular **DSSSD** Si detector

The AGATA array

State of the art in γ – ray spectroscopy array of highly **segmented** coaxial **HPGe** detectors

AGATA main features

- Pulse Shape Analysis (PSA)
 - γ interaction position reconstruction (3 – 5 mm resolution)
 - excellent angular resolution of 1 deg
- γ ray tracking

Annular DSSSD Si detector

- Good granularity and angular resolution
- Pulse Shape Discrimination (PSD) for particle identification

Technique and Setup

ERDA measurement at HZDR – Dresden

ERDA performed by F. Munnik (HZDR)

Target characterization

NRA measurement at CNA – Seville

- C, O contaminants only in the beam spot
- Sputtering targets have a thicker ³He layer \rightarrow factor 4
- Sputtering targets show higher initial ³He content \rightarrow factor 7
- Sputtering targets retain ³He content better \rightarrow factor 14

NRA performed by J. Ferrer (CNA)

Elia Pilotto

Neutron damage correction

- In HPGe detectors fast neutrons damage the crystal lattice, causing charge trapping and energy resolution degradation
- The loss in signal amplitude is dependent on the **path length**, the **electric field** and the **trap density**
- In segmented HPGe detectors, **PSA** can be used to determine the **position of interaction** of the γ rays inside the crystal

$$\frac{E_{meas}(x)}{E_{corr}(x)} = 1 + \frac{t_e(x)}{\lambda_e} + \frac{t_h(x)}{\lambda_h}$$

 $\lambda_{e,h}$ = inverse electron / hole trap density $t_{e,h}(x)$ = sensitivity to electron / hole trapping

Charge trapping

CATHODE

ANODE

Time dependent calibration

- · Energy gain oscillations were observed, attributed to temperature effects
- Implementation of a time dependent gain correction
- Correction parameters were estimated using Cross Correlation Method* (CCM)

BEFORE

AFTER

*NIM paper: https://doi.org/10.1016/j.nima.2021.165368

Main features

- Pulse Shape Discrimination (PSD) used for particle identification
- Kinematic reconstruction to estimate excitation energy and binary partner kinematics
- Stability issues, highlighted with on γ ray from ¹⁶O(³He,p)¹⁸F reaction

Instability correction [preliminary, yet to be included in the analysis]

Elia Pilotto

Nuclear Physics in Astrophysics XI

Dresden – September 2024

Optimization of setup geometry

Doppler corrected γ – ray spectrum

Istituto Nazionale di Fisica Laboratori Nazionali di Legnaro

To do list

- Implementation of DSSSD instability ٠ correction
- Simulation fine tuning
- Lifetime analysis of 6.18 MeV state for validation of the method
- Lifetime analysis of 6.79 MeV state ٠

Nuclear Physics in Astrophysics XI

Thank you for your attention

Acknowledgements: J. Skowronski, G. Andreetta, F. Angelini, M. Balogh, D. Bemmerer, C. Broggini, D. Brugnara, A. Caciolli, F. Cavanna, A. Compagnucci, L. Csedreki, R. Depalo, J. Ferrer, Z. Fulop, F. Galtarossa, A. Giaz, A. Goasduff, B. Gongora, A. Gottardo, S.R. Laskar, N. Marchini, E. Masha, M. Mazzocco, R. Menegazzo, D. Mengoni, B. Million, F. Munnik, M. Osswald, R.M. Pérez-Vidal, J. Pellumaj, D. Piatti, S. Pigliapoco, M. Rocchini, M. Sedlak, F. Soramel, D. Stramaccioni, T. Szucs, S. Turkat, J.J. Valiente-Dobòn, L. Zago

Speaker: Elia Pilotto *elia.pilotto@pd.infn.it*

September 2024