The impacts of nuclear reaction uncertainties on explosive nucleosynthesis in core-collapse supernovae

Nobuya Nishimura

Center for Nuclear Study, The University of Tokyo

Collaboration with T. Rauscher (U Basel) & C. Fröhlich (NCSU)

Key reactions in nucleosynthesis our approach

reaction/decay uncertainty

Monte-Carlo + statistical analysis

observation

- Collaborators: G. Cescutti, S. Cristallo, C. Fröhlich, J. den Hartogh, A. Heger, <u>R. Hirschi</u>, A. Murphy, <u>T. Rauscher</u>, C. Travaglio

Key reactions in nucleosynthesis

our approach reaction/decay uncertainty

Monte-Carlo + statistical analysis

observation

- •<u>s-process</u> : (2) weak s (\rightarrow n_TOF (CERN) experiments), (4) main s
- <u> νp -process</u> : (5) PNS wind \rightarrow RIBF experiments and more?
- (1) Rauscher, NN+(2016) MNRAS 463; (2) NN+(2017) MNRAS 469; (3) NN+(2018) MNRAS 474;

Key reactions in nucleosynthesis

our approach reaction/decay uncertainty

Monte-Carlo + statistical analysis

observation

- $\cdot \nu p$ -process : (5) PNS wind \rightarrow RIBF experiments and more?
- (1) Rauscher, NN+(2016) MNRAS 463; (2) NN+(2017) MNRAS 469; (3) NN+(2018) MNRAS 474;
 - Collaborators: G. Cescutti, S. Cristallo, C. Fröhlich, J. den Hartogh, A. Heger, R. Hirschi, A. Murphy, T. Rauscher, C. Travaglio

Contents

1. Introduction

- •nucleosynthesis processes on the chart of nuclei reaction networks in nucleosynthesis

2. <u>Explosive nucleosynthesis in supernovae</u>

- overview: nucleosynthesis in core-collapse supernovae
- method: SN models and nucleosynthesis
- key reactions found by MC and statistical analysis

Summary

(core-collapse) SN explosive nucleosynthesis

explosive nucleosynthesis

SNR (Cas A)

"1D" explosion models of cc-SN

 thermal "bomb" (e.g., Thielemann, Nomoto, Hashimoto 1996) • "piston" (e.g., Woosley & Weaver 1995) recent debate on reasonable 1D explosion treatments (see, Sawada+2019, Imasheva, Janka+2023)

Thielemann+(1996)

PUSH model (Perego et al. 2015): "energy deposition" by heavy flavor neutrino (not electron type) \rightarrow "consistent" Y_e to explosion dynamics

 $16 M_{\odot}$ adopted model solar metallicity

Basics: explosive nucleosynthesis

- complex combination of reactions and photodissociation (partially in NSE)
- ·What happens at each layer of the star is relatively well known.
- several studies on the reaction rate sensitivity
- (e.g., Magkotsios+2010, Subedi+2020)
- adopted model $16 M_{c}$ solar metallicity

- $T_{9, p} > 5$: explosive Si & O burning (NSE)
 - \rightarrow ⁵⁶Ni, ⁵⁷Ni, ⁴⁴Ti, Fe peak
- $.5 > T_{9, p} > 4$: incomplete Si & explosive O burning
 - \rightarrow 28Si, 32S, 36Ar, 40Ca (+ 56Ni, 44Ti)
- $.4 > T_{9,p} > 3.3$: explosive Ne burning $\rightarrow 160$, ²⁸Si, ³²S

MC-variation reaction network code

- Monte-Carlo framework
 - PizBuin MC-driver (developed by Rauscher, NN)
 - parallelized by OpenMP (shared memory)
- Nuclear Reaction network
 - Network solver:
 - WinNet: the latest Basel network, (Winteler+, 2012)
 - Reaction rates:
 - Reaclib: (Rauscher & Thielemann 2000)
 - T-dependent uncertainty:
 - Provided by Reaclib format, based on Rauscher 2012

Piz Buin (mountain)

- T-dependent beta-decay (Takahashi & Yokoi 1987, Goriely 1999)

Monte-Carlo nucleosynthesis example: weak s-process

- 10,000 times iteration random variation (no correlation) uncertainty range

Reaction lower upper 2.02.0 (n, γ) 2.03.0 $\mathbf{p}, \boldsymbol{\gamma}$ 2.03.0(p,n)10.02.0 (α, γ) 10.02.0 (α, n) 10.02.0 (α,p)

Abundance, Y/Y_{peak}

<u>Abundance uncertainty</u>

nucleus #

<u>Selection by statistical analysis</u>

Pearson's coefficient

$$r_{\text{Pearson}} = \frac{\sum_{i=1}^{k} \left(\tilde{x}_{i} - \overline{x}\right) \left(\tilde{y}_{i} - \overline{y}\right)}{\sqrt{\sum_{i=1}^{k} \left(\tilde{x}_{i} - \overline{x}\right)^{2}} \sqrt{\sum_{i=1}^{k} \left(\tilde{y}_{i} - \overline{y}\right)^{2}}}$$

7 decays/reaction rates

product

correlation

nuclide		$r_{ m cor}$	reaction
^{44}Sc	Radioactive	-0.77	$^{44}\mathrm{Sc}(+\beta)^4$
56 Co	Radioactive	1.00	56 Ni $(+\beta)^5$
⁵⁷ Co	Radioactive	0.92	$^{57}\mathrm{Ni}(+\beta)^5$
^{41}Ca	Radioactive	-0.67	$^{38}\mathrm{Ar}(\alpha,n)$
$^{48}\mathrm{Cr}$	Radioactive	-0.82	$^{48}\mathrm{Cr}(\alpha,p)^5$
^{52}Mn	Radioactive	-0.69	$^{52}\mathrm{Fe}(\alpha,p)^{52}$
57 Ni	Radioactive	-0.79	$^{57}\mathrm{Co}(p,n)$

⁵⁷Ni: half-life 36 h ⁵⁷Ni(n,p)⁵⁷Co \rightarrow affects on SN lightcurve?

Key reactions

key reaction

n ^{44}Ca ⁵⁶Co ⁵⁷Co ⁴¹Ca ^{51}Mn ⁵⁵Co ⁵⁷Ni

key reactions (selected) on the N-Z plane

Time evolution of 57Co, 57Ni

Analysis on different stellar layers

Mass fraction

solar metallicity $16M_{\odot}$ model

$$\operatorname{arson} = \frac{\sum_{i=1}^{k} \left(\tilde{x}_{i} - \overline{x}\right) \left(\tilde{y}_{i} - \overline{y}\right)}{\sqrt{\sum_{i=1}^{k} \left(\tilde{x}_{i} - \overline{x}\right)^{2}} \sqrt{\sum_{i=1}^{k} \left(\tilde{y}_{i} - \overline{y}\right)^{2}}}$$

"Nucleosynthesis and **Evolution of Neutron stars**" 中性子星の進化と元素合成

•**topic:** Supernovae, NSs, XRBs, Nucleosynthesis and related nuclear astrophysics ·27-30 Jan. 2025 @YITP, Kyoto University •regist. & abst. submission will open soon! ·LOC: A. Dohi, E. Kido, T. Naito (co-chair), M. Kitazawa, N. Nishimura (co-chair), T. Tamagawa, H. Yamaguchi

website

nmarv

- <u>ccSN explosive nucleosynthesis</u>
 - origin of iron peak and radioactive nuclei
 - \rightarrow astronomical observation: optical transients and chemical origin explosive nucleosynthesis: complex "network" of reactions
- Key reactions ?
 - •mostly in NSE, no significant key reaction for ⁵⁶Ni (only decay works); few key reactions for including ${}^{57}Ni \rightarrow {}^{57}Ni(n, p){}^{57}Co$ Focusing on different layers (Si-burn/i-Si-burn/Ne-burning) additional
 - key reactions are identified
 - •e.g., for $^{44}\text{Ti} \rightarrow ^{44}\text{Ti}(\alpha, p)^{47}\text{V}$, ^{40}C

$$Ca(\alpha, \gamma)^{44}Ti$$