Magnetic mixing in AGB stars and branchings in the s-process

Diego Vescovi^{1,2}, Sergio Cristallo^{1,2}, and Luciano Piersanti^{1,2}

INAF – Osservatorio Astronomico d'Abruzzo, Teramo, Italy
INFN – Sezione di Perugia, Perugia, Italy

Nuclear Physics in Astrophysics XI Dresden – Germany, 15-20 September 2024

s-Processing in AGB stars

The ¹³C pocket

Which is the physical mechanism?

TOP-DOWN MECHANISMS

- Opacity-induced overshoot (Straniero+ 06, Cristallo+ 09, 11, 15)
- Overshoot + internal gravity waves (Battino+ 16, 19, 21)

BOTTOM-UP MECHANISMS

- Magnetic fields (Trippella+ 16; Vescovi+ 20; Busso+ 21)
 - → Magnetic buoyancy
- Can change due to rotationally-induced mixing (Herwig+ 03; Siess+ 04; Piersanti+ 13)

Magnetic-buoyancy-induced mixing

- → MHD analytical solutions (Nucci & Busso 14):
- Simple geometry: toroidal magnetic field
- → **Magnetic** contribution (Vescovi+ 20) to the dowflow velocity v_d , acting when the density distribution is $\rho \propto r^k$:

Parameters:

• Critical toroidal **B**

$$\Rightarrow B_{\varphi} \gtrsim \left(4\pi\rho r N^2 H_{\rm p} \frac{\eta}{K}\right)^{1/2}$$

- Starting velocity **u**_p of the buoyant material
- → <u>Calibration</u> is needed!

4

$$\rightarrow v_d(r) = u_p \left(\frac{r_p}{r}\right)^{k+2}$$

FRUITY Magnetic: SiC Grains

- Stellar models with same initial mass (2 M_o) and close-to-solar metallicity
- Magnetic contribution

Diego Vescovi

FRUITY Magnetic: observations vs. models

- → FRUITY Magnetic models agree with Fluorine spectroscopic observations in very metal-poor AGB stars
- <u>Reproduce</u> the time evolution of the <u>s-process</u> <u>elements</u> for galactic open clusters located in the inner disk

FRUITY Magnetic: observations vs. models

What next?

Carbon stars

Diego Vescovi

Magnetic mixing in AGB stars and branchings in the s-process

FRUITY Magnetic: observations vs. models

Diego Vescovi

Magnetic mixing in AGB stars and branchings in the s-process

Comparison to solar distribution

Diego Vescovi

Branchings in the s-process

• Branching points: if $\tau_n \sim \tau_\beta$ several paths are possible

Diego Vescovi

Magnetic mixing in AGB stars and branchings in the s-process

- Galactic production of ²⁰⁵Pb is exclusive to the s-process
- <u>It was present in the early Solar System</u>, <u>as testified by meteoritic data</u>
- The ²⁰⁵Pb/²⁰⁴Pb abundance ratio provides us information on the nucleosynthetic events prior to the formation of the Solar System
- Measured for the first time the boundstate $\beta^{\scriptscriptstyle -}$ decay of ^{205}Tl
- The measured half-life is **4.7 times larger** than the previous theoretical estimate (291 days vs. 58 days)

• Despite its long terrestrial half-life ($T_{1/2} = 17$ Myr) of ²⁰⁵Pb acts as a branching point because of the strong dependence on temperature and electron density

 The stable daughter isotope ²⁰⁵Tl becomes unstable during TPs and its β⁻ decay is competing with the β⁺ decay of ²⁰⁵Pb

 <u>Diverging behavior at low</u> <u>temperatures</u> due to the different extrapolation to the terrestrial value (log versus linear)

Leckenby+ 24, accepted in Nature

- The <u>bulk of ²⁰⁵Pb is produced during TPs</u>, resulting in a ²⁰⁵Pb/²⁰⁴Pb ratio of the order of unity.
- During the phase between the end of each TP and the start of the following dredge-up, ²⁰⁵Pb decays according to the local temperature and electron density, whilst ²⁰⁵Tl decay doesn't
- Once carried to the convective envelope the ²⁰⁵Pb abundance is <u>preserved and ejected</u> in the interstellar medium via stellar winds
- NEW/FRUITY(TY87) → ²⁰⁵Pb/²⁰⁴Pb ratio decreased of a factor ~4
- NEW/NETGEN → ²⁰⁵Pb/²⁰⁴Pb ratio increased of a factor ~7

Leckenby+ 24, accepted in Nature

- Plugging in <u>new yields in basic GCE models</u> and comparing to the ²⁰⁵Pb/²⁰⁴Pb ratio from meteorites, the isolation time of Solar material inside its parent molecular cloud can be determined
- **Positive isolation times** that are consistent with the other s-process short-lived radioactive nuclei found in the early Solar System

See posters of Thomas Neff and Iris Dillmann!

Conference Webpage

Summary and outlook

- → The ¹³C pocket formation is a major uncertainty in stellar evolutionary models of AGB stars
- New magnetic models provide a <u>consistent</u> explanation to the majority of the heavyelement isotope data detected in presolar SiC grains from AGB stars
- FRUITY Magnetic models provide a theoretical explanation for <u>various spectroscopic</u> <u>observations</u>
- → s-process branchings requires <u>accurate nuclear data input</u>
- → ²⁰⁵Pb/²⁰⁴Pb ratio is **highly dependent on** temperature dependence of the **weak rates**
- New measurement of ²⁰⁵Tl β⁻ decay put stellar model predictions in <u>agreement with</u> <u>meteoritic data</u>

Backup Slides

Magnetic buoyancy

- MagnetoHydroDynamics (MHD) solutions (Nucci & Busso 2014):
 - No numerical approximations (exact analytic solution)
 - Simple geometry: toroidal magnetic field

Equations:

 $\rho(r) = \frac{\rho_p}{r_r^k} r^k$

where k is the exponent of the density distribution:

The ¹³C pocket: shape

 Effective ¹³C in the ¹³C pocket region -> i.e. the difference between the number fractions of ¹³C and ¹⁴N in the pocket

→ New "<u>Magnetic</u>" pocket presents are more extended and flatter

→ Lower production of isotopes originating from ¹⁴N, e.g. ¹⁹F

SiC Grains and FRUITY models

- Isotopic data including Ni, Sr, Zr, Mo, and Ba isotope ratios in presolar SiC grains
- Stellar models with same initial mass (2 M_{\odot}) and solar metallicity

Critical toroidal B-field

- <u>Stellar model</u>: $2 M_{\odot} Z = Z_{\odot}$
- The critical B_φ necessary for the onset of magnetic buoyancy instabilities, in radiative zone below the convective envelope varies from ~10⁴ G to ~10⁶ G
- Different values of B_{φ} correspond to different values of r_{p}
- → The strength of B_φ determines the extension of the mixed zone and, in turn, of the ¹³C-pocket

Mass-metallicity distribution

 Mass-metallicity distribution in the solar vicinity at the epoch of Solar System formation (Minchev+ 13 model)

Mass-metallicity distribution weighted

- Mass-metallicity distribution in the solar vicinity at the epoch of Solar System formation weighted by the SiC grain yields of the corresponding AGB models
- Corresponding distribution of SiC production vs. grain size (in diameter), compared to SiC grains identified in situ in primitive meteorites