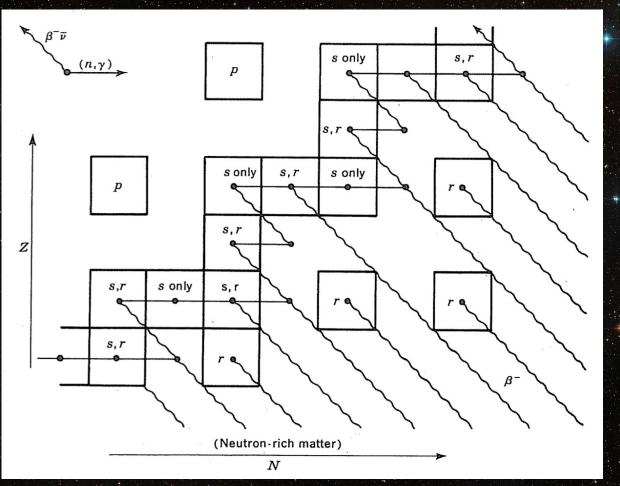
Nuclear Physics in Astrophysics XI

Dresden, Sep 19, 2024

Rare nuclei production in core-collapse supernovae: the γ-process nucleosynthesis

Lorenzo Roberti

Konkoly Observatory, HUN-REN CSFK, Budapest, Hungary

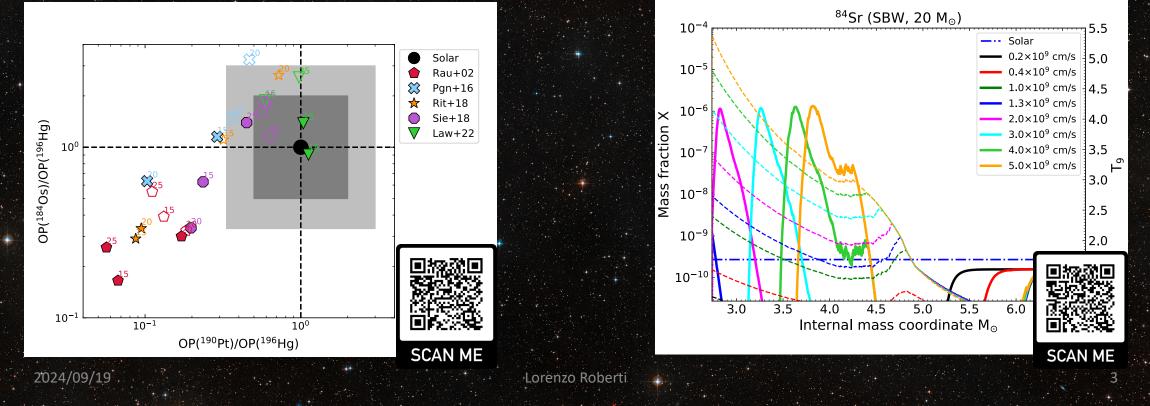


The γ -process nucleosynthesis in CCSNe

Clayton, D.D. (1968) Principles of Stellar Evolution and Nucleosynthesis. University of Chicago Press, Chicago

The <u>*y*-process</u>: a sequence of photodisintegrations (*γ*,*n*), (*γ*,*p*), and (*γ*,*α*) in O/Ne rich layers in CCSN explosions from massive star progenitors (e.g., Woosley & Howard, 1978; Rayet et al., 1995);

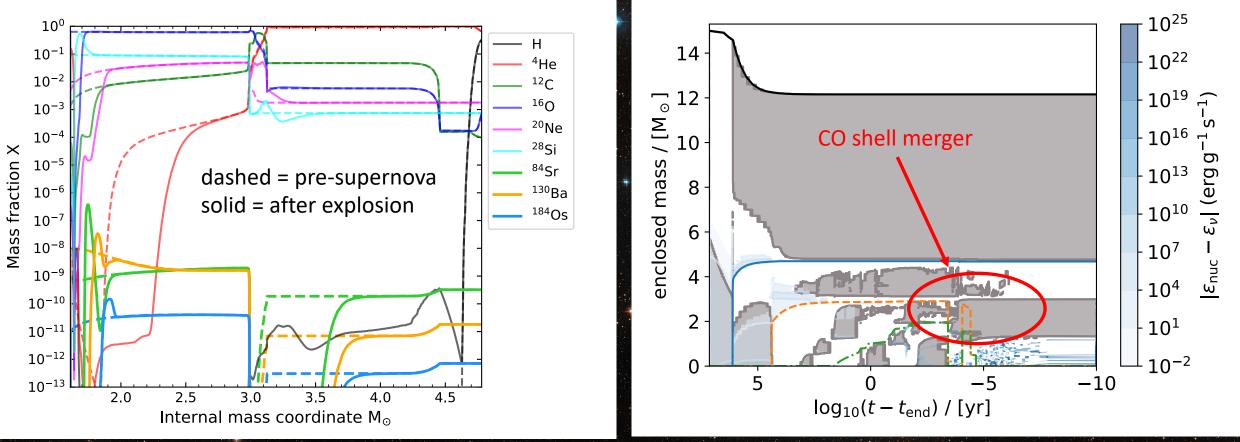
- Production of <u>p-nuclei</u>: 35 neutron-deficient isotopes of elements heavier than Fe;
- <u>Underproduction</u> of typical γ-process yields from massive stars (factor of ~2-4) compared to the solar system abundances. <u>Larger</u> <u>underproduction</u> of ^{92,94}Mo and ^{96,98}Ru yields (~1 order of magnitude).


The γ -process nucleosynthesis in CCSNe

35 stable proton-rich nuclei: ⁷⁴Se, ⁷⁸Kr, ⁸⁴Sr, ^{92,94}Mo, ^{96,98}Ru, ¹⁰²Pd, ^{106,108}Cd, ^{112,114,115}Sn, ¹¹³In, ¹²⁰Te, ^{124,126}Xe, ^{130,132}Ba, ^{136,138}Ce, ¹³⁸La, ¹⁴⁴Sm, ¹⁵²Gd, ^{156,158}Dy, ^{162,164}Er, ¹⁶⁸Yb, ¹⁷⁴Hf, ¹⁸⁰Ta, ¹⁸⁰W, ¹⁸⁴Os, ¹⁹⁰Pt and ¹⁹⁶Hg.

- Different explosive contributions (e.g., α- & vp-process, Woosley & Hoffman 1992, Froehlich et al. 2006, Arcones & Montes 2011, Sasaki et al., 2024);
- r-process contribution (Dillmann et al. 2008);
- neutrino capture (Goriely et al. 2001);
- s-process contribution (Bisterzo et al. 2011);
- s-process and neutrino capture (Bisterzo et al. 2011, Arnould & Goriely 2003).

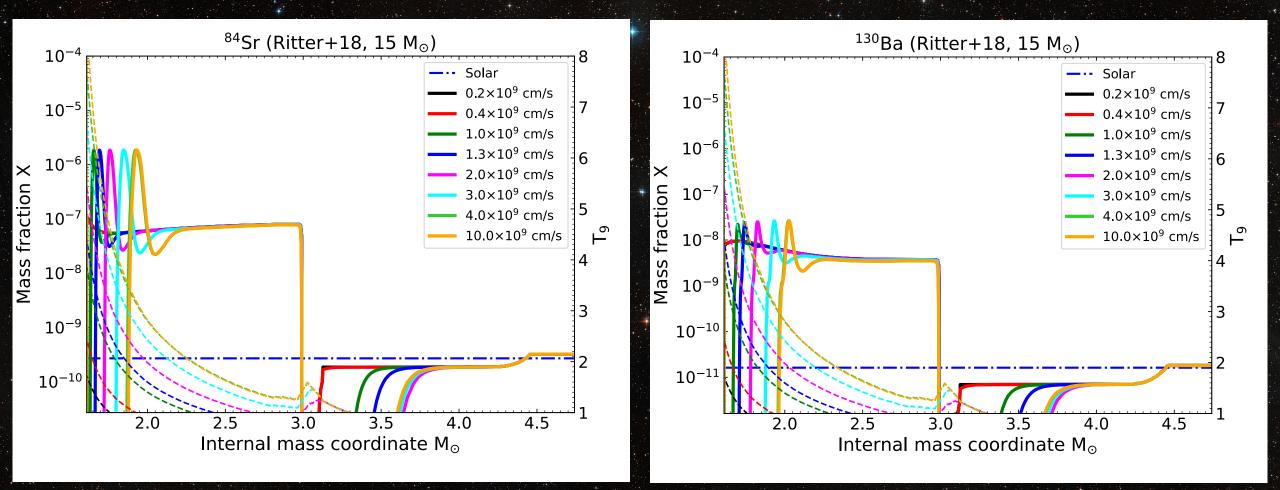
The γ -process nucleosynthesis in CCSN models


- The **pre-supernova structure** of the model is crucial to determine the properties of the explosive O/Ne nucleosynthesis;
- The **explosion parametrization** affects the production of all p-nuclei;
 - Different sets of **reaction rates** lead to significant differences in isotopic ratios.

Carbon-oxygen shell mergers in massive stars

- Ingestion of some C (and Ne) in the O burning shell during late stages of the evolution;
- Formation of an extended (both in mass and radius) mixed convective zone;
- Peculiar nucleosynthesis and impact on the explodability;
- Intrinsically 3D occurrence: studied by hydro simulations (e.g., Andrassy+20, Rizzuti+24);
- Found in several 1D stellar models with M_{ini}≤25 M_☉ (e.g., Rauscher+02, Ritter+18, Roberti+24).

Carbon-oxygen shell mergers in massive stars


15 M_{\odot} at Z=0.02 from Ritter et al., 2018, MNRAS 480, 538

2024/09/19

Lorenzo Roberti

5

The γ -process in C-O shell mergers

Summary and conclusions

- The production of p-nuclei in CCSNe depends on progenitor evolution → crucial having accurate and refined stellar models;
 Nuclear reactions affect the progenitor evolution and the nucleosynthesis;
- Different explosion prescriptions change the production of p-nuclei;
- The <u>C- O shell merger</u> dominates the production of p-nuclei heavier than Pd and it does not depend on the explosion energy;
 Frequency of C-O shell merger in a stellar population? Trend with mass/metallicity/rotation? Update GCE?

Short advertising!

Save the date: <u>16-18th October 2024</u>

<u>https://indico.cern.ch/event/1389227/</u> <u>8thpprocessworkshop@gmail.com</u>

Hope to see you in Budapest next October!

2024/09/19

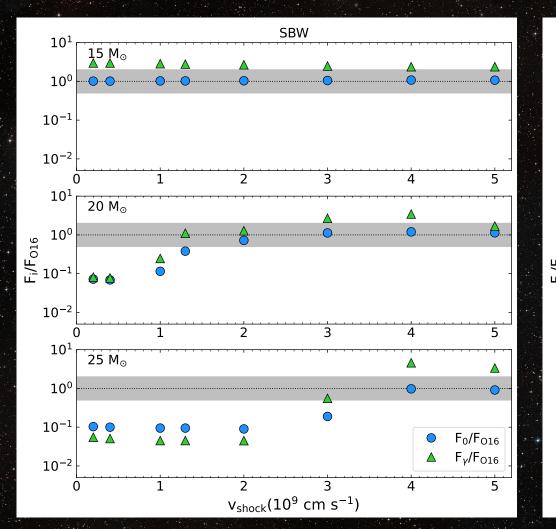

We are organizing the 8th p-process workshop

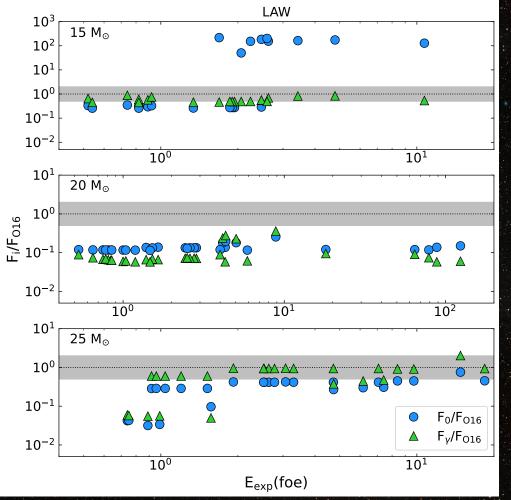
ReNA

@ Konkoly observatory in Budapest!

Lorenzo Roberti

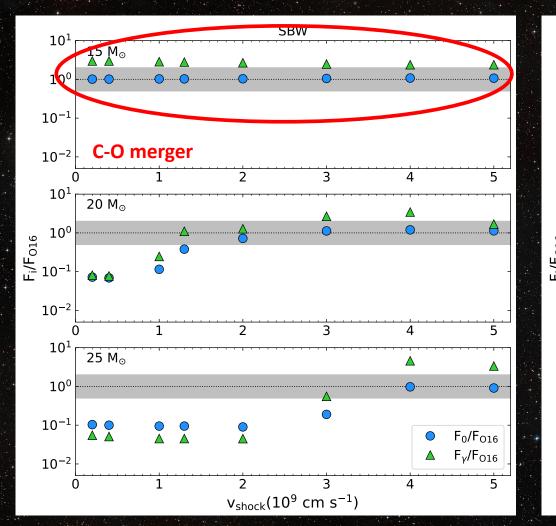
Summary and conclusions

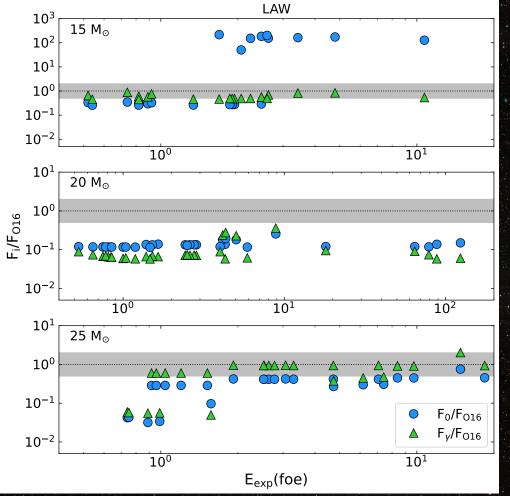

- The production of p-nuclei in CCSNe depends on progenitor evolution → crucial having accurate and refined stellar models;
 Nuclear reactions affect the progenitor evolution and the nucleosynthesis;
- Different explosion prescriptions change the production of p-nuclei;
- The <u>C- O shell merger</u> dominates the production of p-nuclei heavier than Pd and it does not depend on the explosion energy;
 Frequency of C-O shell merger in a stellar population? Trend with mass/metallicity/rotation? Update GCE?

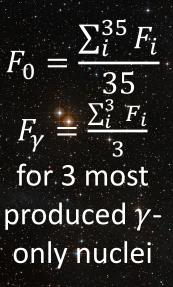

Summary and conclusions

- The production of p-nuclei in CCSNe depends on progenitor evolution → crucial having accurate and refined stellar models;
 Nuclear reactions affect the progenitor evolution and the nucleosynthesis;
- Different explosion prescriptions change the production of p-nuclei;
- The <u>C- O shell merger</u> dominates the production of p-nuclei heavier than Pd and it does not depend on the explosion energy;
 Frequency of C-O shell merger in a stellar population? Trend with mass/metallicity/rotation? Update GCE?

Impact of explosion models on the γ -process




 $F_{0} = \frac{\sum_{i}^{35} F_{i}}{35}$ $F_{\gamma} \equiv \frac{\sum_{i}^{3} F_{i}}{3}$ for 3 most
produced γ only nuclei


12

2024/09/19

Impact of explosion models on the γ -process

13

2024/09/19

The γ -process in C-O shell mergers

Dominant effect on yields of nuclei with $A \ge 110$.

Production of neutron richer isotopes (colder γprocess).

isotope	explosive	merger	envelope	explosive	merger	envelope
	(%)	(%)	(%)	(%)	(%)	(%)
		RIT15			RAU20	
⁷⁴ Se	74.1	14.9	10.9	47.3	49.0	3.6
⁷⁸ Kr	82.1	5.9	11.9	62.1	28.8	9.1
⁸⁴ Sr	70.5	11.5	17.4	42.7	53.2	4.0
⁹² Mo	6.4	8.4	85.2	10.5	15.0	74.5
⁹⁴ Mo	2.8	27.4	69.7	5.9	45.6	48.3
⁹⁶ Ru	8.2	4.3	87.5	12.1	2.4	85.5
⁹⁸ Ru	13.1	49.6	37.2	16.7	37.9	45.3
¹⁰² Pd	36.4	40.2	23.3	45.1	25.6	29.2
¹⁰⁶ Cd	34.6	22.5	43.0	53.5	9.2	37.3
¹⁰⁸ Cd	11.4	63.4	25.1	19.1	46.2	34.6
¹¹² Sn	34.6	35.5	29.8	47.0	16.9	36.1
114Sn	20.7	71.0	8.2	18.0	68.7	13.0
¹¹⁵ Sn	0.3	64.9	34.8	1.3	61.7	36.8
¹¹³ In	5.4	42.5	52.0	8.5	46.6	44.7
¹²⁰ Te	8.2	62.5	29.3	43.0	29.6	27.3
¹²⁴ Xe	22.0	59.9	18.1	70.3	8.9	20.8
¹²⁶ Xe	7.0	87.4	5.5	40.1	54.1	5.6
¹³⁰ Ba	35.0	61.0	3.7	66.6	24.1	9.3
¹³² Ba	1.8	95.9	2.2	18.6	78.9	2.2
136Ce	40.4	51.0	8.5	42.6	39.0	18.4
¹³⁸ Ce	8.3	84.7	6.8	20.7	74.4	4.6
¹³⁸ La	0.0	82.9	17.0	2.0	91.6	6.2
¹⁴⁴ Sm	12.6	84.0	3.2	16.3	80.6	2.9
152Gd	0.0	3.9	96.1	0.5	13.1	86.1
¹⁵⁶ Dy	0.6	93.7	5.7	7.7	89.5	2.3
158Dy	0.0	84.4	15.5	1.8	95.8	1.9
¹⁶² Er	0.3	97.2	2.4	3.6	95.0	1.0
¹⁶⁴ Er	7.5	39.1	53.3	16.4	70.7	12.7
¹⁶⁸ Yb	2.4	94.4	3.2	3.8	95.1	0.7
¹⁷⁴ Hf	3.7	87.5	8.6	6.7	92.2	1.4
¹⁸⁰ Ta	0.0	98.3	1.7	0.9	94.7	4.2
^{180}W	18.1	70.7	10.2	35.0	61.8	3.1
184Os	0.9	88.9	10.2	0.8	96.8	2.3
190Pt	1.2	58.4	40.3	3.5	91.4	4.8
¹⁹⁶ Hg	12.1	84.4	2.7	14.9	84.2	0.6