Coincidence measurements of fusion reactions involving carbon and oxygen with the high-precision STELIar LAboratory

STELLA

Aurélie Bonhomme STELLA collaboration IPHC Strasbourg, France

Carbon and oxygen burning in massive stars

 $^{12}C+^{12}C$: first heavy-ion fusion reaction to be considered

Fusion involving ¹²C and ¹⁶O: nuclear perspective

- Nuclear structure / resonances
- Molecular states
- Alpha-clustering
- Fusion hindrance
 - Observed in medium-mass range \rightarrow ¹²C and ¹⁶O systems?

20/09/24

20/09/24

5/12

STELLA measurements of ${}^{12}C+{}^{12}C$

- Provides reliable excitation functions over 8 orders of magnitude
- Explore different regimes: hindrance regime, Gamov windows
- At the lowest energies: ≤ 100 pb cross-sections!
- Latest analysis: improved timing selection
- Next: reach the deep sub-barrier regime underground (proposal @Felsenkeller)

Fruet *et al.* PRL **124** (2020)

Nippert et al. in preparation (2024)

20/09/24

Measurements of fusion reactions involving carbon and oxygen with STELLA

6/12

Toward ${\rm ^{12}C+^{16}O}$ and ${\rm ^{16}O+^{16}O}$ with STELLA

Challenging systems: at astrophysical energies of interest: larger number of open channels \rightarrow experimental upgrade needed

Toward ${\rm ^{12}C}{\rm +^{16}O}$ and ${\rm ^{16}O}{\rm +^{16}O}$ with STELLA

Challenging systems: at astrophysical energies of interest: larger number of open channels \rightarrow experimental upgrade needed

<mark>8</mark>/12

Resolving complex final states: the ${}^{12}C+{}^{16}O$ case

At energies of interest: three-body exit channels are open Measured down to ~2mbarn (γ) Christensen Nucl. Phys. A280 (1977)

\rightarrow STELLA Si detector upgrade:

- ✓ full kinematics determination
- ✓ improved angular coverage
- \checkmark adapted thickness for ${}^{\rm 12}C{+}^{\rm 16}O$

Developments in cooperation with Micron Technologies

 $\theta \sim 1^{\circ}$ res. $\phi 11^{\circ}/22^{\circ}$ res.

& DAQ upgrade

20/09/24

Measurements of fusion reactions involving carbon and oxygen with STELLA

9/12

Improved precision: energy resolution budget

20/09/24

Upgrade of the beam line at Andromède

- Re-design the STELLA 90° line @Andromède
- Beam optics simulations optimized on STELLA requirements: beam spot in size and symmetry

Andromède facility, Orsay, France

• Measurement of the beam emittance planed on site this autumn

20/09/24

11/12

Upgrade of the beam line at Andromède

20/09/24

Conclusion and perspectives

- STELLA successfully explored fusion cross-sections down to sub-nbarn region for ¹²C+¹²C
 virtual background suppression via coincidence and ns-timing precision
- Explore next fusion systems: ${}^{12}C + {}^{16}O$ and ${}^{16}O + {}^{16}O$
 - ✓ upgrade charged-particle detectors and improve beam focusing
 - \checkmark aim: exclusive measurement, full resolution of exit channels
- Rich physics program:
 - Nuclear physics: resonances, fusion hindrance?
 - Astrophysical impact for massive stars: structure, nucleosynthesis?
 - \rightarrow New hydrodynamics calculations on-going for sensitivity studies (T. Dumont poster #107)
 - + inclusion of TDHF calculations
 - explore deep sub-barrier energies underground @Felsenkeller (ChETEC-INFRA)

Thank you for your attention!

arb

J. Nippert,^{1,}* P. Adsley,² A. Bonhomme,¹ R. Canavan,^{3,4} W.N. Catford,³ P. Cotte,² S. Courtin,^{1,5,†} D. Curien,¹ S. Della Negra,² T. Dumont,¹ E. Gregor,¹ G. Haefner,² F. Hammache,² M. Heine,¹ D.G. Jenkins,⁶ J. Lesrel,² E. Monpribat,¹ L. Morrison,³ M. Moukaddam,¹ S. Pascu,³ Zs. Podolyák,³ P.H. Regan,^{3,4} I. Ribaud,² M. Richer,¹ M. Rüdiger,³ N. de Séréville,² C. Stodel,⁷ J.G. Vega Romero,⁶ and J. Vesić⁸

(STELLA collaboration)

 ¹ Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
 ² Institut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
 ³ Department of Physics, University of Surrey, Guildford, GU2 7XH, UK
 ⁴ National Physical Laboratory, Teddington, Middlesex, TW110 LW, UK
 ⁵ University of Strasbourg Institute of Advanced Studies (USIAS), Strasbourg, France
 ⁶ University of York, York, YO10 5DD, UK
 ⁷ GANIL, CEA/DSM-CNRS/IN2P3, Caen, F-14076, France
 ⁸ GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany

+ @IPHC Strasbourg: Guy Heitz, Cédric Mathieu, Marc Richer, Emil Traykov

UNIVERSITÉ DE STRASBOURG

ANDROMEDE QMat