Observations are not always observed

Jonas Klevas

In collaboration with: M. Bergemann, A. Kučinskas, H.-G. Ludwig, R. Hoppe, P. Eitner, et al.

Galactic Chemical Evolution (GCE)

- Understanding GCE unlocks origin of chemical elements and history of our galaxy
 - impact of mergers and secular evolution on Galactic disk
- On one side we have models of stellar evolution, nucleosynthesis, stellar yields
- Comparing to observed abundances patterns gives us an idea what is still missing

Abundances are not observed!

How are stellar abundances measured?

Standard approach

1D hydrostatic model atmospheres

Local thermodynamic
equilibrium (LTE) spectrum
synthesis

Bergemann et al. (2021)

Galactic chemical evolution surveys

- (Almost) exclusively in 1D LTE
- When (and how) is it worth to go from 1D LTE to 3D NLTE?
- 1D hydrostatic model atmosphere: few minutes on a laptop
- 3D hydrodynamic model atmosphere: from 1000 CPU h (low resolution, dwarf) to 1000 000 CPU h (giants)
- Atom model needs accurate atomic data: photoionization, line transitions, collisional transitions with e⁻ and H I, as well as 1000+ CPU h

NLTE effects can be significant!

fppt.com

Choice of spectral lines matters

Application to GCE

GCE models already explain solar neighborhood well, NLTE effects are small

Application to GCE

NLTE effects are small because 396.2 nm line is too blue

Application to GCE

NLTE effects are significant. GCE models are not close

Room for expansion!

Conclusions

- Observational surveys rely on simplifications of 1D LTE spectrum synthesis
- 1D LTE can be a reasonable approximation (e.g., Mg) compared to GCE models
- In many cases it is not (especially in metalpoor regimes)
- To obtain abundances at accuracy of 0.1 dex or better, it has to be proven how (in)significant 3D NLTE effects are

Thank You!