Nuclear Astrophysics meets Asteroseismology

Hannah Brinkman, Postdoctoral Researcher Institute of Astronomy (IvS), KU Leuven, Belgium Nuclear Physics in Astrophysics XI 19/9/2024, Dresden, Germany

How do isotopes move inside a star?

Internal mixing processes for massive stars:

- Convective boundary mixing
- Envelope mixing

Project input:

- Ledoux criterion for convection
- Asteroseismically inferred values for convective boundary mixing and envelope mixing

Connection to asteroseismology

What is asteroseismology?

Asteroseismology is the study of the internal structures of stars by means of their oscillations, comparable to how we learn about the interior of the Earth by studying earthquakes

Pedersen, M. G.et al., 2021, Nature Astronomy

Pedersen, M. G.et al., 2021, Nature Astronomy

 m/M_{\star}

Model ingredients:

- \square Initial mass of 20 M $_{\odot}$
- Initial metallicity Z=0.014
- Nuclear network of 212 isotopes
- □ α_{ov} and D_{env} are varied according to asteroseismology
 □ Endpoint at log(T_c)=9

Brinkman et al. 2024. A&A

- More D_{env} leads to a lower CO-core mass and a lower C/O-ratio
- More CBM leads to a higher CO-core mass

Linking back to nucleosynthesis: ²⁶Al

- More CBM leads to:
 a lower ²⁶Al yield -> longer MS leading to more internal decay
- A higher D_{env} leads to
 a <u>higher</u> ²⁶Al yield -> more mixing within the stellar envelope

Linking back to nucleosynthesis: ⁴¹Ca & ³⁶Cl

10

Conclusions

Conclusions:

- Mixing induced by internal gravity waves and rotation have comparable results on the main-sequence
- Internal gravity waves during helium burning have a strong effect on:
 - □ C/O-ratio at the end of helium burning
 - □ Yields of isotopes produced during this stage

Future work

□ Future work will include:

- ❑ A larger range of initial masses
- Evolution to the end of silicon burning
- Combining internal gravity waves and rotation
- Time-dependent CBM and envelope mixing
- Comparing model results with observations
- Updated reaction rates (when relevant and available)