#### Abstract ID: 36

# **The SHADES Project:**

# Underground Measurement of the Low Energy $^{22}Ne(\alpha,n)^{25}Mg$ Cross Section

# T. Chillery, A. Best, D. Rapagnani, and D. Mercogliano For the LUNA Collaboration

1400m

with ion source

3.5MV



 $(E_{\rm thresh} = 561 \, \rm keV)$ 

#### 1. Motivation

LUNN

- **Massive stars** (M > 8Mo) and Asymptotic Giant Branch (**AGB**) stars synthesise neutron-rich isotopes [1,2] across A  $\sim$  60 – 90 and 90 – 209, respectively.
- Path proceeds via slow neutron-capture process (*s*-process), where reactions <sup>22</sup>Ne(α,n)<sup>25</sup>Mg and <sup>13</sup>C( $\alpha$ ,n)<sup>16</sup>O are the dominant neutron sources.

#### 2. Goals

- Measure <sup>22</sup>Ne( $\alpha$ ,n)<sup>25</sup>Mg across  $E_{\alpha}$  = 600 886 keV ( $E_{cm}$  = 507 750 keV)
- Remeasure  $E_{\alpha}$  = 832 keV resonance, search for  $E_{\alpha}$  = 635 keV resonance



<sup>22</sup>Ne( $\alpha$ ,n)<sup>25</sup>Mg reaction rate is weakly constrained at astrophysical temperatures 100 – 300 MK.

## 3. Experimental Setup

- INFN Laboratori Nazionali del Gran Sasso
  - **Ultra-low** background rates
- Accelerator: Belotti Ion Beam Facility [7], 3.5 MV
- Beam: <sup>4</sup>He<sup>1+</sup>, I ~ 300 500 eµA
- Target: Enriched <sup>22</sup>Ne gas ~ 2 mbar, 20 cm,  $10^{18}$  atom/cm<sup>2</sup>
- DAQ: COMPASS & Caen V1725SB/D digitisers 250 MSample/s
- Detector array: **SHADES** [8]
  - Scintillator-<sup>3</sup>He Array for Deep-underground Experiments on the S-process
  - 12x EJ-309 liquid scintillators -> neutron/gamma separation & n-moderation
  - 18x <sup>3</sup>He proportional counters -> reaction yield



Borated polyethylene shielding

### 4. Preliminary Data Analysis

- **Calibration data**: AmBe neutron source
  - a) Typical waveforms after baseline subtraction
  - **b)** Scintillator PSD vs energy
  - c) Energy spectrum from <sup>3</sup>He counters
  - d) Coincidence timing between Scintillators and <sup>3</sup>He counters
- March 2024: First beam test using <sup>nat</sup>Ne gas
- Encountered beam-induced background (BIB) from  ${}^{13}C(\alpha,n){}^{16}O$  and  ${}^{17}O(\alpha,n){}^{20}Ne$  (preliminary)
- Improvements made include additional PE shielding and covering beamline elements with



# Tantalum, Copper, and Gold

#### 5. Future Work

- Autumn 2024: Additional beam tests to ensure low BIB
- Winter 2024: <sup>22</sup>Ne(α,n)<sup>25</sup>Mg reaction cross-section measurements with enriched <sup>22</sup>Ne gas
- Paper in progress: EJ-309 <sup>3</sup>He counter prototype measurements of <sup>7</sup>Li(p,n)<sup>7</sup>Be at Frankfurt.

### 6. References

- 1) S.E. Woosley and T.A. Weaver, Tech. Rep. (1995) 2) A.I. Karakas and J.C. Lattanzio, Pub of the Astro. Soc. of Australia **31** (2014) e030 3) M. Jaeger *et al.* PRL **87** (2001) 202501 4) H.W. Drotleff et al. The Astro. Jour. **414** (1993) 735 – 739
- 5) U. Giesen *et al.* NPA **561** (1993) 95 111 6) V. Harms, K.L. Kratz, and M. Wiescher, PRC **43**:6 (1991) 2849 – 2861 7) M. Junker *et al.* Frontiers **11** (2023) 8) D. Rapagnani *et al.* EPJ Web of Conf. **260** (2022) 11031

#### thomas.chillery@lngs.infn.it

This research was supported by ERC-StG 2019 #852016

