Investigating the *r*-process abundance pattern of *r*-II stars with the largest homogeneously analyzed sample

Mila Racca^{1*}, Terese Hansen¹, Ian Roederer²

¹Department of Astronomy, The Oskar Klein Centre, Stockholm University,

AlbaNova, SE-10691 Stockholm, Sweden

²Department of Physics, North Carolina State University, Raleigh, NC 27695-8202

*Contact: mila.racca@astro.su.se

¹The R-Process Alliance: Abundance Universality among Some Elements at and between the First and Second R-Process Peaks, Roederer et al. (2022) ² Element abundance patterns in stars indicate fission of nuclei heavier than uranium, Roederer et al. (2023) ³HD 222925: A New Opportunity to Explore the Astrophysical and Nuclear Conditions of r-process Sites, Holbeck et at. (2023) ⁴ Spallation of r-Process Nuclei Ejected from a Neutron Star Merger, Wang et al. (2020) ⁵The R-process Alliance: A Nearly Complete R-process Abundance Template Derived from Ultraviolet Spectroscopy of the R-process-enhanced Metal-poor Star HD 222925, Roeder et al. (2022)