

Contribution ID: 319 Type: Poster

Impact of 56 Ni production in neutrino-driven winds from long-lived binary neutron star merger remnants

Monday 16 September 2024 18:24 (1 minute)

We investigate the nucleosynthesis and kilonova light curve based on recent long-term binary neutron star merger simulations that incorporate a two-moment neutrino-transport scheme. The ejecta are evolved for 30 days using axisymmetric radiation-hydrodynamics simulations coupled in-situ to a complete nuclear network. For the first time, we find that the neutrino-driven wind from the post-merger remnant is mostly proton-rich. The resulting nucleosynthesis products are predominantly 56 Ni and other iron-group elements. After a few days, the decay of 56 Ni and later 56 Co becomes the primary source of heating in the expanding matter, which significantly alters the time dependence of the kilonova light curve. The observation of this effect would be a smoking gun for the presence of a long-lived neutron-star remnant in future kilonova observations.

Primary authors: JACOBI, Maximilian (University of Jena); MAGISTRELLI, Fabio (FSU Jena, TPI); LOF-FREDO, Eleonora (INAF-OAAb); RICIGLIANO, Giacomo (Technical University of Darmstadt); BERNUZZI, Sebastiano (University of Jena); RADICE, David (The Pennsylvania State University); ARCONES, Almudena (TU Darmstadt); PEREGO, Albino (Università di Trento)

Presenter: JACOBI, Maximilian (University of Jena)

Session Classification: Poster Flashes