Nuclear Physics in Astrophysics XI

Contribution ID: 294

Type: Poster

Using Cool-Bottom Processing in RGB and AGB stars to explain Isotopic Ratios in Presolar Grains

Tuesday 17 September 2024 10:42 (1 minute)

Current stellar nucleosynthesis models fail to reproduce the measured isotopic abundances in group 2 oxygenrich presolar grains, which are characterized by large ¹⁸O depletions. It was proposed that cool bottom processing in low-mass AGB stars is responsible for the observed isotopic abundances. We modeled cool-bottom processing during the RGB and the AGB of $1.2M_{\odot}$ stars to predict surface ¹⁸O/¹⁶O, ¹⁷O/¹⁶O, and ²⁶Al/²⁷Al ratios. Effective secular mixing must work against the steep mean molecular weight (μ) gradient at the bottom of the radiative zone below the convective envelope to overcome a net increase in μ on the order of 0.01% to recreate observed isotopic ratios. Sensitivity tests in which ¹⁸O(p, α)¹⁵N and ¹⁶O(p, γ)¹⁷F were varied using reaction rate of factors of 10/0.1 and 1.4/0.71 respectively suggest that nuclear physics input is an important factor in model-grain comparison. This work shows that a secular cool-bottom mixing model that preserves stratification is a viable origin mechanism of the isotopic ratios, $2M_{\odot}$ and $3M_{\odot}$ stars, and Monte Carlo impact studies on a range of reactions using current experimental uncertainties.

Primary author: COCKSHUTT, Maeve (University of Victoria)

Co-authors: HERWIG, Falk (University of Victoria); DENISSENKOV, Pavel (University of Victoria); Dr LIU, Nan (Institute for Astrophysical Research)

Presenter: COCKSHUTT, Maeve (University of Victoria)

Session Classification: Poster Flashes