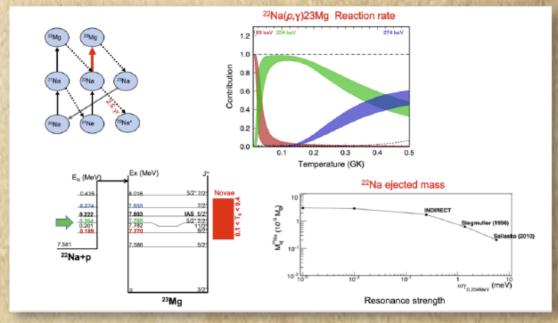

WANTED

²²Na DEAD or ALIVE


#138 understanding the ²²Na cosmic abundance

MOTIVATIONS

Classical novae are thermonuclear explosions in stellar binary systems, and important sources of ²⁶Al and ²²Na. While y rays from the decay of the former radioisotope have been observed throughout the Galaxy, ²²Na remains untraceable. Its half-life (2.6 yr) would allow the observation of its 1275 keV y-ray line from the cosmic source, using for example the COSI wide-field y-ray telescope. However, the prediction of such an observation requires good knowledge of its nucleosynthesis.

Credit: Drawing: M. Deconinck, Image by Jim Willis, courtesy of Northrop Grumman Corporation ½ Space Systems; background image courtesy of European Southern Observatory

NOVAE SIMULATIONS

About 10 reactions involving radioactive nuclei and charged particles have been directly measured at low energies. Among them, the 22 Na(p, γ) 23 Mg reaction has a direct impact on the amount of radioactive 22 Na produced in novae. The rate of this reaction is mainly dictated by a single resonance in 23 Mg at 7785.0(7) keV. Our novae simulations show that, in the range of the debated values of the resonance strength, the mass (M) of 22 Na ejected in novae depends on the lifetime (7) of this key state approximately as M \propto $^{70.7}$.

Ref. C. Fougeres et al (2023). EPJ Web of Conferences (Vol. 279, p. 09001). EDP Sciences.