

Contribution ID: 268

Type: Poster

The quest for detection of ¹⁸²Hf in Earth's archives new techniques in Accelerator Mass Spectrometry for the search of live nucleosynthesis signatures

Monday 16 September 2024 15:52 (1 minute)

Accelerator mass spectrometry (AMS) is commonly the most sensitive technique for detection of long-lived isotopes and has allowed identification of $^{60}\mathrm{Fe}$ and $^{244}\mathrm{Pu}$ signals in terrestrial and lunar archives from recent nearby nucleosynthesis.

Belonging to the middle-mass region of r-process nuclides, 182 Hf ($T_{1/2}$ =8.9 Ma) could potentially be produced in different scenarios to those for 244 Pu. However, AMS detection of astrophysical 182 Hf has failed up to now due to the strong interference from its ubiquitous stable isobar 182 W. Based on various yield- and elementalratio-calculations for possible 182 Hf production scenarios, the estimated 182 Hf/Hf signal intensity is at most a few times 10^{-13} , about two orders of magnitude below classical AMS sensitivity limits.

The novel Ion-Laser InterAction Mass Spectrometry (ILIAMS) technique achieves near-complete suppression of isobars via selective laser photodetachment and chemical reactions of decelerated anion beams in a gas-filled radio frequency quadrupole. It enables suppression of $^{182}WF_5^-$ vs. $^{182}HfF_5^-$ by >10⁵ resulting in a W-corrected blank value of $^{182}Hf/^{180}Hf=(3.4\pm2.1)\times10^{-14}$.

We will highlight the potential of ILIAMS for sensitive detection of previously inaccessible long-lived radioisotopes and discuss ways to proceed in order to detect 182 Hf at astrophysical levels including the challenges this poses in chemical sample preparation of HfF₄ from 100 gram-amounts of deep-sea archives.

Primary author: MARTSCHINI, Martin (University of Vienna, Faculty of Physics –Isotope Physics, VERA Laboratory, Vienna, Austria)

Co-authors: KOLL, Dominik (Helmholtz-Zentrum Dresden-Rossendorf, Accelerator Mass Spectrometry and Isotope Research, Dresden, Germany); MERCHEL, Silke (University of Vienna, Faculty of Physics –Isotope Physics, VERA Laboratory, Vienna, Austria); FICHTER, Sebastian (Helmholtz-Zentrum Dresden-Rossendorf, Accelerator Mass Spectrometry and Isotope Research, Dresden, Germany); FROEHLICH, Michaela (Research School of Physics, The Australian National University, Canberra, Australia); WALLNER, Anton (Helmholtz-Zentrum Dresden-Rossendorf, Accelerator Mass Spectrometry and Isotope Research, Dresden, Germany); WIDERMANN, Laurenz (University of Vienna, Faculty of Physics –Isotope Physics, VERA Laboratory, Vienna, Austria); GOLSER, Robin (University of Vienna, Faculty of Physics –Isotope Physics, VERA Laboratory, Vienna, Austria)

Presenter: MARTSCHINI, Martin (University of Vienna, Faculty of Physics –Isotope Physics, VERA Laboratory, Vienna, Austria)

Session Classification: Poster Flashes