

Bound-state β^- decay of ²⁰⁵TI⁸¹⁺ clarifies ²⁰⁵Pb dating in the early Solar System

G. Leckenby^{1,2}, R.S. Sidhu³, R.J. Chen³, R. Mancino⁴, B. Szányi⁵, U. Battino⁶, S. Cristallo⁷, **Iris Dillmann**¹, T. Faestermann⁸, R. Gernhäuser⁹, C. Griffin¹, J. Glorius³, A.I. Karakas¹⁰, T. Kaur¹¹, M. Lugaro¹², Yu. A. Litvinov³, G. Martínez-Pinedo³, B. Meyer¹³, T. Neff³, M. Pignatari¹², M.S. Sanjari³, D. Vescovi¹⁴, H. Weick³ and A. Yagüe Lopéz¹⁵ for the E121 Collaboration ¹TRIUMF, ²U of British Columbia, ³GSI Darmstadt, ⁴Charles U Prague, ⁵U of Szeged, ⁶U of Hull, ⁷INAF d'Abruzzo, ⁸TU Darmstadt, ⁹TU Munich, ¹⁰Monash U, ¹¹Panjab U, ¹²Konkoly Observatory, ¹³Clemson U, ¹⁴Goethe U Frankfurt, ¹⁵Los Alamos National Laboratory Contact: gleckenby@triumf.ca

²⁰⁵Pb is a crucial Short-Lived Radionuclide (SLR, nuclei with $t_{1/2} = 1 - 100$ My) that can constrain formation times and active nucleosynthesis in the Early Solar System (ESS). Production of ²⁰⁵Pb in Asymptotic Giant Branch (AGB) stars depends on the bound-state β-decay of ²⁰⁵Tl [1]. The halflife for fully stripped ²⁰⁵Tl⁸¹⁺ was measured at GSI Darmstadt in the Experimental Storage Ring (ESR) to be 291^{+33}_{-27} days. The corresponding isolation time for the ESS was consistent for the first time.

²⁰⁵TI⁸¹⁺ Decay Experiment

²⁰⁵TI⁸¹⁺ ions were created via fragmentation of
 ²⁰⁶Pb primary beam, then stacked in ESR.

²⁰⁵Pb in Thermally-Pulsing Asymptotic Giant Branch stars

In AGB stars where ²⁰⁵Pb is produced, there

Bound state β^- decay of ²⁰⁵TI

- Bound-state β^- decay (β_b decay) occurs in highly charged ions and can change the stability of a nucleus.
- The β-electron is created directly in a bound atomic orbital of the daughter nucleus instead of being emitted into the continuum in normal β decay (Fig 1).

- Ions were stored in the ESR for 0 10 hours allowing the ²⁰⁵TI⁸¹⁺ ions to decay to ²⁰⁵Pb⁸¹⁺.
- Ions were monitored with Schottky detectors that non-destructively track the ion intensity.
- Longer storage times produced more ²⁰⁵Pb daughter ions. Linear fit gives the half-life of 291^{+33}_{-27} days or a log-ft = 5.91(5) (Fig 3).

are two important s-process sites:

 ¹³C pocket – T ~ 90 MK. All ²⁰⁵Pb that is produced in the ¹³C pocket decays due to thermal population of 2.3 keV excited state.
 He shell flash – T ~ 250 MK. At such high temperatures, ²⁰⁵Tl is stripped bare and decays via bound-state β-decay to ²⁰⁵Pb. However, ²⁰⁵Pb must survive until the thirddredge up for it to be mixed into envelope.

•

See **poster by T. Neff** for calculation of the astrophysical weak decay rates.

Using new experimental weak rates, we:

- Ran Monash, FUNS, and NuGrid models of AGB stars to calculate ²⁰⁵Pb yields.
- Used AGB yields to determine steady-state abundance of ²⁰⁵Pb in the Interstellar Medium,
 - Compared ²⁰⁵Pb/²⁰⁴Pb ratio in ISM vs the ESS

Fig 1: normal (left) vs bound-state β-decay (right)

- Terrestrially, $^{205}TI^{0+}$ is stable and ^{205}Pb decays via electron capture with $t_{1/2} = 17.3$ My.
- When ²⁰⁵TI is fully stripped to the 80/81+ charge state, β_b decay is possible.

of the solar system from its parent nebula [2].

²⁰⁵Pb is the only SLR produced exclusively by

meteorite ratio to calculate the isolation/ collapse time of the solar gas parcel from its parent molecular cloud.

- Probability distributions for the isolation time form 3 s-process SLRs are shown in Fig 5.
- Our results produce consistent and positive isolation values for the first time, suggesting
 ²⁰⁵Pb could be used as an ESS chronometer.

Fig 5: calculated isolation time for *s*-process SLRs. Distributions include stochastic ISM enrichment and meteorite uncertainties. Standard vs Carbonaceous Chondrites are two possible meteorite values [7,8].

the s-process (Fig 4).

This work was supported by the ERC under the Horizon 2020 research and innovation prog. (Grant No. 682841 "ASTRUm") and NSERC (Grants SAP-IN-2019-00030, SAPEQ-2020-00004).

References:

[1] K. Yokoi, et al. Astron. Astrophys, 145:339–346, 1985.
[2] M. Lugaro, et al. Prog. Part. Nucl. Phys. 102:1–47, 2018.
[3] M.S. Freedman, et al. Science 193(4258):1117–1119, 1976.
[4] K. Takahashi et al, Phys. Rev. C 36:1522, 1987.
[5] J. N. Bahcall, Rev. Mod. Phys. 60:297, 1988.
[6] S. Liu et al, Phys. Rev. C 104:024304, 2021.
[7] E. Palk et al, Meteorit. Planet. Sci. 53:167–186, 2018.
[8] R.G.A. Baker et al, Earth Planet. Sci. Lett. 291:39–47, 2010.

Discovery, accelerated