The New Deep-underground Direct Measurement of $^{22}Ne(\alpha, \gamma)^{26}Mg$ with EASy A feasibility study

D. Mercogliano^{1,2}, A. Best^{1,2}, D. Rapagnani^{1,2} and the LUNA collaboration

¹Istituto Nazionale di Fisica Nucleare sezione di Napoli, Via Vicinale, 80145 Napoli, Italy ²Università degli Studi di Napoli Federico II, Napoli, Via Vicinale, 80145 Napoli, Italy

Abstract: The reaction $^{22}Ne(\alpha,\gamma)^{26}Mg$ is associated with several questions in nuclear astrophysics, but its stellar reaction rate remains highly uncertain. This is because all the direct measurements performed so far have been only able to provide upper limits below a strong resonance at 832 keV. The purpose of EAS γ is to perform a direct measurement of ²²Ne(α,γ)²⁶Mg in the range of astrophysical interest (Gamow window) below 600-800 keV and the remeasurement of the well-known 832 keV resonance. The measurement will be performed deep underground at Laboratori Nazionali del Gran Sasso.

In this poster, I will present the current status of the project and the expected sensitivity achieved by EAS γ , as predicted by MonteCarlo simulations.

Astrophysical motivation

Low values of energy (hundreds of keV)

State of the art

Kappeler, Mengoni, 2005

- ▶ Isotopic ratios of ^{24,25,26}Mg in AGB
- Nucleosynthesis of ⁶⁰Fe
- Nucleosynthesis beyond Fe through weak component in massive stars
- > Abundances of s-only isotopes near branching points in AGB

both channels

- Very low values of Xsection (~ pbarn)
- High level density in ^{26}Mg

Main Goal of EASy

First direct measurement of the $^{22}Ne(\alpha,\gamma)^{26}Mg$ deep underground in the range of astrophysical interest below 600-800 keV and the remeasurement of the wellknown 832 keV resonance.

EASy's novel approach

- Quasi free-background environment of LNGS \rightarrow cosmic-ray background suppression of 5 o.o.m.
- > High efficiency γ -ray spectrometer $\rightarrow \eta_{FEP} \simeq 11 \%$
- \rightarrow High and stable α beam provided by LUNA MV
- > 99% enriched ²²Ne windowless gas target

MonteCarlo simulation results

 \clubsuit Re-measurement of the well known resonance at 832 keV (E_x = 11329 keV) :

Comparison of the simulated signal (see Table for parameters) with experimental background:

Array on surface and unshielded

Array underground and with 15 cm of lead shielding

Conclusions

\therefore Does an alpha cluster state exist at $E_x = 11171$ keV ($E_r = 657$ keV)?

Table 1. Properties of the states of the compound nucleus ²⁶Mg used in the simulation.

Ex	E_r^{cm} (keV)	J^{π}	$\omega\gamma$ (eV)	events/h
11321	706 ± 1	$0^+ { m or} 1^-$	$(4.6 \pm 1.2) \times 10^{-5}$	14033
11171	556.33 ± 0.05	2^+ , 1^- or ≥ 1	$\sim 10^{-11}$ (UL) 1	0.034
¹ Calculated using Γ_{α} , Γ_{γ} and Γ_{n} values from Adlsey et al. 2020				

I = 500 μ A and 40 days of measurement \rightarrow only 33 events but some of them fall in the background free region!

The enhancement in sensitivity of EAS γ allows to possibly :

- Remeasure the $\omega\gamma$ of the $E_{r} = 832 \text{ keV}$
- Measure or redefine the UL on the $\omega\gamma$ of the $E_r = 657 \text{ keV}$

