

Constraining the y process Cross section measurements of (p,γ) reactions in inverse kinematics

A. Tsantiri,^{1,2} A. Spyrou,^{1,2} A. Palmisano,³ P. Mohr,⁴ E. C. Good,⁵ H. Aurora,⁶ G. Balk,⁷ H. C. Berg,^{1,2} J. Berkman,^{1,2} K. Bosmpotinis,^{1,2} C. Dembski,⁸ P. DeYoung,⁷ N. Dimitrakopoulos,⁶ A. A. Doetsch,^{1,2} T. Gaballah,^{2,9} J. Graham II,^{1,2} R. Garg,² C. Harris,^{1,2} R. Jain,^{1,2} S. Liddick,^{1,2} R. Lubna,² S. Lyons,⁵ M. Mogannam^{1,2} B. Monteagudo,⁷ F. Montes,^{1,2} G. Ogudoro,⁷ G. J. Owens-Fryar,^{1,2} J. Pereira,² A. L. Richard,¹⁰ E. Ronning,^{1,2} H. Schatz,^{1,2} A. Sebastian,^{1,2} M. Smith,² M. Smith,^{1,2} C. Tinson,^{1,2} P. Tsintari,⁶ S. Uthayakumaar,² E. Weissling,⁷ and R. Zegers,^{1,2}

¹ Michigan State University, ² Facility for Rare Isotope Beams, ³ University of Tennessee, Knoxville, ⁴ ATOMKI, ⁵ Pacific Northwest National Laboratory, ⁶ Central Michigan University, ⁷ Hope College, ⁸ University of Notre Dame, ⁹ Mississippi State University, ¹⁰ Ohio University

Summing NaI(Tl) SuN

- Large size, high efficiency γ-ray calorimeter
- 8 optically isolated segments, 24 PMTs
- Sum of Segments (SoS) \rightarrow Information about individual γ-rays
- Total Absorption Spectrum (TAS) \rightarrow Information about total excitation

Experiments

- Cross section measurements in inverse kinematics at the Facility for Rare Isotope Beams
 - Proof-of-principle experiment with a stable beam for the ⁸²Kr(p,γ)⁸³Rb reaction (2017)
 - Radioactive beam experiment for the $^{73}As(p,\gamma)^{74}Se$ reaction (2023)
- Hydrogen gas cell target located in the center of SuN
- SuN + SuNSCREEN [3] detectors for γ-ray detection and cosmic

Analysis Overview

- After background subtraction, the measured yield corresponds to the integral of the total absorption peak (sum peak)
- Due to energy straggling within the gas target and Doppler shift, the sum peak was widened significantly
- \rightarrow The detection efficiency needs to be calculated as a function of all contributing energies within the sum peak
- The de-excitation of the compound nucleus was simulated using Hauser-Feshbach theory in order to calculate the function of energies that contribute in the sum peak

 \rightarrow Obtained constraints on the statistical properties of the

energy Ex

Energy

background rejection

⁷⁴Se

The 82 Kr(p, γ) 83 Rb cross section was measured in three energies within the Gamow window for the γ

The results indicate that standard statistical model calculations using NON-SMOKER and TALYS tend to overestimate the cross section. Based on experimental data in neighboring nuclei [5,6], there appears to be a consistent trend in this mass

The constraints on the statistical properties of the ⁸³Rb nucleus allow for a better description of the experimental data with TALYS, as well as a constrain on the cross section on broader energy range

73 As(p, γ) 74 Se

The 73 As(p, γ)⁷⁴Se cross section was measured for the first time within the Gamow window for the γ process.

There is good agreement between the measured cross section and statistical model calculations using NON-SMOKER. This may suggest that the overproduction of Se in network calculations is not due to uncertainty in this reaction.

Future Work

- 1. Finalize analysis of the 73 As(p, γ) 74 Se data
- 2. Provide broader cross section constraint from statistical properties
- 3. Study the effect of the extracted 73 As(p, γ) 74 Se cross section on the ⁷⁴Se final abundance for a SNII scenario

REFERENCES

ACKNOWLEDGEMENTS

The presenter would like to acknowledge the support of IReNA that enabled their participation in the NPA-XI Conference. This material is based upon work supported by the National Science Foundation, the U.S. Department of Energy Office of Science and Office of Nuclear Physics, the State of Michigan and Michigan State University.

