Interstellar and Cosmogenic **Fingerprints in Lunar Soil**

HELMHOLTZ ZENTRUM **DRESDEN** ROSSENDORF

TECHNISCHE **UNIVERSITÄT** DRESDEN

S. Zwickel^{1,2}, S. Fichter¹, M. Hotchkis³, D. Koll^{1,2}, J. Lachner¹, M. Norman⁴, S. Pavetich⁴, G. Rugel¹, K. Stuebner¹, S. Tims⁴, A. Wallner^{1,2,4}

¹Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, ²TUD Dresden University of Technology, Dresden, Germany, ³Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia, ⁴Australian National University (ANU), Canberra, Australia

Astrophysical Motivation

Core collapse supernova (SN)

Neutron star merger and rare subset of SN

Interstellar Radionuclides in the Solar System

Terrestrial:

- \succ Time resolution (:)
- Look back ~20 Myr (

Large samples (~kg) (\succ ⁶⁰Fe^[3], ²⁴⁴Pu^[3], ²⁴⁷Cm

Lunar:

- \succ No time resolution (\sim)
- Integrating up to 400 Myr (
- Small samples (~g) (~)

➢ ⁶⁰Fe^[2], ²⁴⁴Pu, ²⁴⁷Cm

Rates ~1000:1

the *r*-process?

Pure *r*-process tracer^[1]: 244 Pu(t_{1/2}=81Myr) & ²⁴⁷Cm(t_{1/2}=16Myr)

Terrestrial (1-1 3500 • 244Pu flux ⁶⁰Fe deposition rate (a.u. E 3000 Nallner et al. (2021)^[3] 2500 2000 1500 1000 at flux 500 5 8 age (Ma)

Interstellar ⁶⁰Fe and ²⁴⁴Pu in deep-sea ferro-manganese crust^[3]

Samples from all six Apollo missions integrating from ~1 Myr to ~200 Myr

Cosmogenic Radionuclides

Is leaching already enough? \rightarrow No!

Exposure age on the Moon?

Focus of this work: Lunar soil

- \succ Technique to extract simultaneously up to 9 elements from a single Lunar soil sample (Be, Al, Ca, Mn, Fe, Ni, Hf, Pu, Cm)
- \succ Cosmogenic radionuclides for exposure time (¹⁰Be, ²⁶Al, ⁴¹Ca and ⁵³Mn)
- Confirm interstellar ⁶⁰Fe in Lunar soil

- Excess ⁶⁰Fe above cosmogenic \succ production → interstellar ⁶⁰Fe!
- In agreement with literature and terrestrial data^[2,3]
- \succ More interstellar ⁶⁰Fe in smaller grains

Actinides

15mm

Tests at ANSTO on ²⁴²Pu-spike measurements in lunar simulants yielded total efficiencies $\geq 3\%$ \rightarrow ready for real samples

Sample Preparation

radionuclide extraction

 \rightarrow exposure time > 0.5 Myr

Accelerator Mass Spectrometry

- \succ ~mg to ~50 mg sample necessary for all light elements
- > Gram sized samples needed for 244 Pu ((244 Pu/ 60 Fe)_{terr} = 10⁻⁵)^[3]

Summary and Outlook

- \succ AMS as sensitive and efficient tool to provide new data \rightarrow e.g. only few 100²⁴⁴Pu-atoms in sample needed for one significant detector event!
- > Technique established for simultaneous extraction of multiple elements
- Some samples not yet saturated in ¹⁰Be, ²⁶Al, and/or ⁵³Mn \rightarrow exposure time to cosmic rays
- > Interstellar ⁶⁰Fe found in agreement with literature and terrestrial data
- \succ Total AMS detection efficiencies between 0.2 and 8‰

Work in progress

- \succ More ⁶⁰Fe measurements at HIAF, ANU
- > ²⁴⁴Pu & ²⁴⁷Cm measurements at VEGA, ANSTO and HAMSTER, HZDR \rightarrow interstellar *r*-process signatures in Lunar soil?

Acknowledgement: We thank the NASA/JSC Apollo Sample Curation Team for providing the samples. We acknowledge the support of ANSTO via the proposal AP16204. Thanks to S. Beutner (ICP-MS, HZDR) and S. Linke, E. Stoll (Lunar simulant TUBS-M, TU Berlin).

References: [1] Fields, B. D. and Wallner A. (2023) Annu. Rev. Nucl. Sci. 73, 365-395. [2] Fimiani, L. et al. (2021) Science, 372(6543), 742-745. [4] Merchel, S. and U. Herpers (1999) Radiochim. Acta 84, 215. [5] Koll, D. et al. (2021) Science, 372(6543), 742-745. [4] Merchel, S. and U. Herpers (1999) Radiochim. Acta 84, 215. [5] Koll, D. et al. (2021) Science, 372(6543), 742-745. [4] Merchel, S. and U. Herpers (1999) Radiochim. Acta 84, 215. [5] Koll, D. et al. (2021) Science, 372(6543), 742-745. [4] Merchel, S. and U. Herpers (1999) Radiochim. Acta 84, 215. [5] Koll, D. et al. (2021) Science, 372(6543), 742-745. [4] Merchel, S. and U. Herpers (1999) Radiochim. Acta 84, 215. [5] Koll, D. et al. (2021) Science, 372(6543), 742-745. [4] Merchel, S. and U. Herpers (1999) Radiochim. Acta 84, 215. [5] Koll, D. et al. (2021) Science, 372(6543), 742-745. [4] Merchel, S. and U. Herpers (1999) Radiochim. Acta 84, 215. [5] Koll, D. et al. (2021) Science, 372(6543), 742-745. [4] Merchel, S. and U. Herpers (1999) Radiochim. Acta 84, 215. [5] Koll, D. et al. (2021) Science, 372(6543), 742-745. [4] Merchel, S. and U. Herpers (1999) Radiochim. Acta 84, 215. [5] Koll, D. et al. (2021) Science, 372(6543), 742-745. [4] Merchel, S. and U. Herpers (1999) Radiochim. Acta 84, 215. [5] Koll, D. et al. (2021) Science, 372(6543), 742-745. [4] Merchel, S. and U. Herpers (1999) Radiochim. Acta 84, 215. [5] Koll, D. et al. (2021) Science, 372(6543), 742-745. [4] Merchel, S. and U. Herpers (1999) Radiochim. Acta 84, 215. [5] Koll, D. et al. (2021) Science, 372(6543), 742-745. [4] Merchel, S. and U. Herpers (1999) Radiochim. Acta 84, 215. [5] Koll, D. et al. (2021) Science, 372(6543), 742-745. [4] Merchel, S. and U. Herpers (1999) Radiochim. Acta 84, 215. [5] Koll, D. et al. (2021) Science, 372(6543), 742-745. [4] Merchel, S. and U. Herpers (1999) Radiochim. Acta 84, 215. [5] Koll, D. et al. (2021) Science, 372(6543), 742-745. [4] Merchel, S. and U. Herpers (1999) Radiochim. Acta 84, 215. [5] Koll, D. et al. (2021) Science, 372(6543), 742-7 (2022) NIMB 530, 53-58. [6] Lachner et al. (2023) NIMB 535, 29-33. [7] Rugel et al. (2016) NIMB 540, 188-193. [9] Wallner et al. (2023) NIMB 534, 48-53. [10] Leya, I., et al. (2020) Meteorit. & Planet. Sci., 55(4), 818-831. [11] Nishiizumi, K., et al. (1979) EPSL 44(3), 409-419. [12] Li, Y., et al. (2017) J. Geophys. Res. Space Phys. 122(2), 1473-1486. [13] Welten, K. C., et al. (2023) LPSC 54, #2921

Institute of Ion Beam Physics and Materials Research · Accelerator Mass Spectrometry and Isotope Research Sebastian Zwickel • s.zwickel@hzdr.de • www.hzdr.de/ams

