DE GENÈVE

Nitrogen and Fluorine production in the early Universe

Sophie Tsiatsiou Observatory of Geneva - Switzerland

In collaboration with: Devesh Nandal¹, Yves Sibony, Georges Meynet, Yutaka Hirai^{2,3}, Eoin Farrell, Luca Sciarini, Sylvia Ekström, Laura Murphy, Arthur Choplin⁴, Raphael Hirschi⁵, Cristina Chiappini⁶, Boyuan Liu⁷, Volker Bromm⁸, Jose Groh

¹Astronomy Building, 530 McCormick Road, P.O. Box 400325, Charlottesville, VA 22904

²Department of Physics and Astronomy, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA ³Astronomical Institute, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku,

Sendai, Miyagi 980-8578, Japan Institut d'Astronomie et d'Astrophysique, Universit\'e Libre de Bruxelles, CP 226, 1050, Brussels, Belgium

⁵Astrophysics Group, Keele University, Keele, Staffordshire ST5 5BG, UK ⁶Leibniz-Institut f\"ur Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany

⁷Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK

⁸Department of Astronomy, University of Texas, Austin, TX 78712, USA

Nuclear Physics in Astrophysics XI 16 September 2024

Population III stars

What are the Pop III stars and why are they interesting objects?

- The first generation of stars, formed from the metal-free gas produced in the Big Bang \Rightarrow Zero-metallicity,
- Formed at redshifts $z \sim 20 35$, \bullet (e.g. Abel et al. 2002, Bromm et al. 2002)
- Massive stars, (e.g. Bromm et al. 2002)
- Governed the early chemical evolution of galaxies,
- Contributed to the reionization, \bullet (e.g. Murphy et al. 2021b, Sibony et al. (2022)
- High rotation. (e.g. Stacy et al. 2013)

Tsiatsiou et al. (2024)

After He-b

GENEC stellar evolution code

Initial composition: X=0.7516, Y=0.2484, Z=0

Reaction rates: NACRE database

$$D_{shear} = \frac{K}{\frac{\varphi}{\delta} \nabla_{\mu} + (\nabla_{ad} - \nabla_{rad})} \times \frac{H_p}{g\delta} \left[f_{energ} \left(\frac{9\pi}{32} \Omega \frac{d \ln \Omega}{d \ln r} \right)^2 - (M_{ad} - \nabla_{rad}) \right]$$

$$D_{eff} = \frac{1}{30} \frac{\left| rU(r) \right|^2}{D_h}$$

$$Maeder (1997)$$

$$Chaboyer \& Zahn (1997)$$

Convective zones: Schwarzschild criterion

Overshoot parameter $d_{\rm over}/H_{\rm p} = 0.1$

Impact of fast rotation on primordial stars CNO shell boost

- During He-burning, C is injected to the H-burning shell.
- N will be produced in the H-burning shell.
- The mixing induces a huge boost of nuclear energy (It may changes the evolution and nucleosynthesis of the star)
- It may produce a very extended intermediate convective zone attached to the H-burning shell.

Primary nitrogen \longrightarrow produced by hydrogen and helium, and not pre-existing CNO elements

Tsiatsiou et al. (2024)

Primary nitrogen production in Population III models

CNO shell boost \longrightarrow important role in the primary N-production

$$M_{14} \mathsf{N} = \int_{0}^{M_{tot}(t)} X^{14}(M_r, t) \, \mathrm{d}M_r$$

Tsiatsiou et al. (2024)

Remnant mass and final fate from: \bullet Farmer et al. (2019), Patton & Sukhbold (2020).

Can rapidly rotating massive Population III stars be possible sources of extreme N-emitters in high-redshift galaxies?

Rapidly rotating massive Population III stars as possible sources of extreme N-emilters in high-redshift galaxies

- GN-z11 at z = 10.6 (Oesch et al. 2016), and CEERS-1019 at z = 8.6782 (Finkelstein et al. \bullet 2017).
 - N/O abundance ratio of GN-z11 exceeding four times solar (*Cameron et al. 2023*).
 - CEERS-1019 emission lines suggest advanced chemical processes for a galaxy of its era (Tang et al. 2023). N-emitter (Margues-Chaves et al. 2023).

MSs, VMSs, and SMSs could play a significant role in the chemistry of these galaxies (Woods) *et al. 2020*).

<u>Rapidly rotating massive Population III stars as possible sources of</u> extreme N-enrichment in high-redshift galaxies N/O abundance ratios Eject above CO core Eject above remnant

- Enrichment of the surrounding IMS though mass loss.
- Mass-loss episodes prior to the star's death, and/or at the end of evolution.
- Mass-cut = Remnant mass (Farmer et al. (2019); Patton & Sukhbold (2020)).
- Generation of populations of stars following an IMF where each population corresponds to a given metallicity.
- Dilution of the ejecta into the ISM.

- Power-law IMFs: $dN/dM_{\rm ini} \sim M_{\rm ini}^{\alpha}$ Salpeter ($\alpha = -2.35$) Top-heavy ($\alpha = -1$)
- Pink dashed lines and shaded regions show results and lower bounds from observations, from Margues-Chaves et al. (2024).

Nandal, Sibony & Tsiatsiou (2024)

Impact of Extremely Massive Stars of extreme N-enrichment in high-redshift galaxies N/O abundance ratios

- Pop III stars for $1000 M_{\odot} \leq M_{\text{ini}} \leq 9000 M_{\odot}$.
- Enrichment of the surrounding IMS though mass loss.
- Stars lose their mass at or after the core He-burning phase.
- **Ejection Scenarios:** 1. Mass-cut = 10% of the total stellar mass 2. Mass-cut = 40% of the total stellar mass
 - 3. Mass-cut = all the stellar mass above CO core.
- Dilution of the ejecta into the ISM.

The coloured shades regions represent results for the abundances of GN-z11 by Cameron et al. (2023).

Fluorine enrichment in the early Universe

Fluorine stellar yields

Tsiatsiou et al. (to be submitted)

- Enhanced production of primary N for rapidly rotating Pop III models compared to those with lower initial rotations.
- star.
- explaining high N/O ratios, for observations as GN-z11 and CEERS-1019.
- evolution of the early universe.

The apparition of the extended intermediate convective zone induced by the injection by diffusion/convection of C and O produced in the He-burning region into the H-burning shell may have a dramatic impact on the structure and the evolution of the

The production of primary N is similar to rapidly rotating Pop III models and the moderately rotating models with $Z = 10^{-5}$.

Rapidly rotating massive Population III stars & EMS (for individual stars with $1900 M_{\odot} \leq M_{ini} \leq 8900 M_{\odot}$) are essential for

Rapidly rotating Population III stars significantly contributed to early F enrichment, highlighting their critical role in the chemical

Thank you for your attention!

