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Population III stars
What are the Pop III stars and why are they interesting objects?

• The first generation of stars, formed from the metal-free gas produced in the Big Bang  Zero-metallicity,


• Formed at redshifts , 
(e.g. Abel et al. 2002, Bromm et al. 2002) 

• Massive stars, 
(e.g. Bromm et al. 2002) 

• Governed the early chemical evolution of galaxies,


• Contributed to the reionization, 
(e.g. Murphy et al. 2021b, Sibony et al. (2022) 

• High rotation.  
(e.g. Stacy et al. 2013)

⇒

z ∼ 20 − 35



The rapidly rotating grid
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GENEC stellar evolution code

Initial composition: X=0.7516, Y=0.2484, Z=0

Reaction rates: NACRE database



CNO shell boost
Impact of fast rotation on primordial stars

• During He-burning, C is injected to the H-burning shell. 


• N will be produced in the H-burning shell.


• The mixing induces a huge boost of nuclear energy (It may changes the 
evolution and nucleosynthesis of the star)


• It may produce a very extended intermediate convective zone attached to 
the H-burning shell.

Tsiatsiou et al. (2024) 

Primary nitrogen  

produced by hydrogen and helium, 

and not pre-existing CNO elements

⟶



Primary nitrogen production in Population III models

CNO shell boost  

important role in the primary N-production

⟶

M14N = ∫
Mtot(t)

0
X14(Mr, t) dMr

Tsiatsiou et al. (2024) 

• Remnant mass and final fate from:  
Farmer et al. (2019), Patton & Sukhbold 
(2020).

Tsiatsiou et al. (2024) 



Can rapidly rotating massive Population III stars be possible 
sources of extreme N-emitters in high-redshift galaxies?



• GN-z11 at  (Oesch et al. 2016), and CEERS-1019 at  (Finkelstein et al. 
2017).


• N/O abundance ratio of GN-z11 exceeding four times solar (Cameron et al. 2023).


• CEERS-1019 emission lines suggest advanced chemical processes for a galaxy of its era 
(Tang et al. 2023). 
N-emitter (Marques-Chaves et al. 2023).


• MSs, VMSs, and SMSs could play a significant role in the chemistry of these galaxies (Woods 
et al. 2020).

z = 10.6 z = 8.6782

Rapidly rotating massive Population III stars as possible 
sources of extreme N-emitters in high-redshift galaxies



N/O abundance ratios

Rapidly rotating massive Population III stars as possible sources of 
extreme N-enrichment in high-redshift galaxies

Nandal, Sibony & Tsiatsiou (2024) 

• Enrichment of the surrounding IMS though mass loss.


• Mass-loss episodes prior to the star’s death, and/or at the end 
of evolution.


• Mass-cut = Remnant mass (Farmer et al. (2019); Patton & 
Sukhbold (2020)).


• Generation of populations of stars following an IMF where 
each population corresponds to a given metallicity.


• Dilution of the ejecta into the ISM.


• Power-law IMFs: 

 Salpeter (α = −2.35) 

 Top-heavy (α = −1)


• Pink dashed lines and shaded regions show results and lower 
bounds from observations, from Marques-Chaves et al. (2024). 

dN/dMini ∼ Mα
ini



• Pop III stars for .


• Enrichment of the surrounding IMS though mass loss.


• Stars lose their mass at or after the core He-burning phase.


• Ejection Scenarios: 
1. Mass-cut = 10% of the total stellar mass 
2. Mass-cut = 40% of the total stellar mass 
3. Mass-cut = all the stellar mass above CO core.


• Dilution of the ejecta into the ISM.


• The coloured shades regions represent results for the 
abundances of GN-z11 by Cameron et al. (2023).

1000 M⊙ ⩽ Mini ⩽ 9000 M⊙

N/O abundance ratios

Impact of Extremely Massive Stars of extreme N-enrichment 
in high-redshift galaxies

Nandal et al. (2024) 



Fluorine enrichment in the early Universe

Tsiatsiou et al. (to be submitted) 

Fluorine stellar yields



Conclusions

Thank you for your 
attention!

• Enhanced production of primary N for rapidly rotating Pop III models compared to those with lower initial rotations. 

• The apparition of the extended intermediate convective zone induced by the injection by diffusion/convection of C and O 
produced in the He-burning region into the H-burning shell may have a dramatic impact on the structure and the evolution of the 
star. 

• The production of primary N is similar to rapidly rotating Pop III models and the moderately rotating models with . 

• Rapidly rotating massive Population III stars & EMS (for individual stars with ) are essential for 
explaining high N/O ratios, for observations as GN-z11 and CEERS-1019. 

• Rapidly rotating Population III stars significantly contributed to early F enrichment, highlighting their critical role in the chemical 
evolution of the early universe.

Z = 10−5

1900 M⊙ ⩽ Mini ⩽ 8900 M⊙


