

## NEW RESULTS ON PROTON CAPTURES ON NEON ISOTOPES AT LUNA

A. Caciolli

Nuclear Physics in Astrophysics XI – Dresden

16/09/2024





#### THE NeNa CYCLE





## **Key Astrophysical sites:**

RGB stars (Red Giant Branch)

AGB stars (Asymptotic Giant Branch)

Novae

Massive stars

NeNa cycle

A better understanding of this cycle can help solving the puzzle of the Na-O anticorrelation Globular Glusters

Through the  ${}^{23}Na(p,\gamma){}^{24}Mg$  reaction, it links to MgAl cycle influencing also Mg





#### THE NeNa CYCLE



## **Key Astrophysical sites:**

RGB stars (Red Giant Branch)

AGB stars (Asymptotic Giant Branch)

Novae

Massive stars

#### NeNa cycle

- $^{22}Ne(p,\gamma)^{23}Na$  studied in two different experiments
- Three resonances measured directly and
- Direct capture cross section below 400 keV observed for the first time

Cavanna et al., PRL115(2015)252501 Ferraro et al., PRL121(2018)172701 Takacs et al., PRC109(2024)064627

#### THE NeNa CYCLE



## **Key Astrophysical sites:**

RGB stars (Red Giant Branch)

AGB stars (Asymptotic Giant Branch)

Novae

Massive stars

#### NeNa cycle

- $^{22}Ne(p,\gamma)^{23}Na$  studied in two different experiments
- Three resonances measured directly and
- Direct capture cross section below 400 keV observed for the first time

Cavanna et al., PRL115(2015)252501 Ferraro et al., PRL121(2018)172701 Takacs et al., PRC109(2024)064627 Slemer et al., MNRAS465(2017)4817

<sup>23</sup>Na(p, $\gamma$ )<sup>24</sup>Mg  $\rightarrow$  three resonances measured with improved precision wrt literature

Boeltzig et al., PLB 705(2019)122



#### THE <sup>20</sup>Ne(p, $\gamma$ )<sup>21</sup>Na



**LUNA GOALS:** 

The  ${}^{20}Ne(p,\gamma){}^{21}Na$  (Q = 2431.6 keV) reaction is the first and slowest reaction of the NeNa cycle

2000

#### THE <sup>21</sup>Ne(p, $\gamma$ )<sup>22</sup>Na

### LUNA GOALS:





The  ${}^{21}Ne(p,\gamma){}^{22}Na$  (Q = 6738.7 keV) reaction has impact on O-Ne novae and core-collapse supernovae

#### THE EXPERIMENT AT LUNA

- Natural Ne gas target (90.3% <sup>20</sup>Ne) P = 2 mbar or enriched <sup>21</sup>Ne (59%)
- ♦ HPGe detecors:

Relative efficiency 130%(GePD) Relative efficiency 90% (GeDD)

- ♦ Lead shielding
- ♦ Radon box





#### THE EXPERIMENT AT LUNA

- Natural Ne gas target (90.3% <sup>20</sup>Ne) P = 2 mbar or enriched <sup>21</sup>Ne (59%)
- ♦ HPGe detecors:

Relative efficiency 130%(GePD) Relative efficiency 90% (GeDD)

- ♦ Lead shielding
- ♦ Radon box

















### **RESONANCE SCAN**

Varying the beam energy, the resonance is populated at different positions along the target chamber, where the detectors have different efficiency.



#### <sup>20</sup>Ne(p,γ)<sup>21</sup>Na 366 keV RESONANCE ENERGY





| Rolfs et al. (1975) | LUNA (2023) |
|---------------------|-------------|
| [keV]               | [keV]       |
| 384±5               | 386.0±0.5   |

#### 386 KEV RESONANCE STRENGTH AND BRANCHING RATIO



| Transition<br>[keV] | Rolfs et at. (1975)<br>[%] | LUNA<br>[%] |
|---------------------|----------------------------|-------------|
| 2425 →0             | 56±4                       | 57.4±3.4    |
| 2798 →332           | 11±4                       | 4.0±0.2     |
| 2798 →0             | 33±4                       | 38.5±2.2    |

Experimental yield corrected for the combination of efficiency and beam straggling along the target chamber by using tuned GEANT4 simulations

| Rolfs et al. (1975) | <b>LUNA (2023)</b>                                   |
|---------------------|------------------------------------------------------|
| [meV]               | [meV]                                                |
| 0.11 ± 0.2          | 0.112 ± 0.002 <sub>stat</sub> ± 0.005 <sub>sys</sub> |

 $^{20}$ Ne(p, $\gamma$ ) $^{21}$ Na S-FACTOR



# Direct capture studied in the energy range : $E_p = 260 \text{ keV} - 400 \text{ keV}$

## Impact

- 26% reduction of <sup>21</sup>Ne surface abundance in hot bottom burning of AGB
- 30% reduction of <sup>21,22</sup>Ne in novae ejecta
- 23% reduction of <sup>22</sup>Na in novae ejecta

Masha et al. PRC **108** (2023) L052801

#### <sup>21</sup>Ne(p, $\gamma$ )<sup>22</sup>Na REACTION



<sup>21</sup>Ne( $p, \gamma$ )<sup>22</sup>Na completely **dominated** by the **resonances** 

#### <sup>21</sup>Ne( $p,\gamma$ )<sup>22</sup>Na NEW TRANSITIONS



Many new transitions discovered for the 126 keV, 272 keV and 290 keV resonances

HPGe spectrum at the 126 keV resonance

## <sup>21</sup>Ne(p,γ)<sup>22</sup>Na PRELIMINARY RESULTS

| $E_{\rm R} \ ({\rm lab})_{\rm G\ddot{o}rres[19]} \ [{\rm keV}]$ | $E_{\rm R}~({\rm lab})_{ m Becker[24]}~[{ m keV}]$ | $E_{ m R}~( m lab)_{ m LUNA}~[ m keV]$              |
|-----------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|
| $126.3\pm0.6_{\rm tot}$                                         | $126.69 \pm 0.04_{\rm stat}$                       | $127.3\pm0.1_{\rm stat}\pm0.5_{\rm syst}$           |
|                                                                 | $270.67\pm0.04_{\rm stat}$                         | $271.4 \pm 0.2_{ m stat} \pm 0.4_{ m syst}$         |
| $271.7 \pm 0.4_{ m syst}$                                       | $271.56\pm0.04_{\rm stat}$                         | $272.31 \pm 0.01_{\rm stat} \pm 0.44_{\rm syst}$    |
| $290.9\pm0.4_{\mathrm{syst}}$                                   | $290.50\pm0.04_{\rm stat}$                         | $291.5\pm0.1_{\rm stat}\pm0.5_{\rm syst}$           |
| $352.2\pm0.4_{\mathrm{syst}}$                                   | _                                                  | $352.6\pm0.1_{\mathrm{stat}}\pm0.4_{\mathrm{syst}}$ |

#### Measured **resonance energies** against literature

| $E_{\rm R} \; [{\rm keV}]$ | $\omega \gamma_{ m literature} \ [{ m meV}]$ | $\omega\gamma_{ m LUNA}~[{ m meV}]$                  |
|----------------------------|----------------------------------------------|------------------------------------------------------|
| 126                        | $0.0375 \pm 0.007$ [19]                      | $0.0375 \pm 0.0002_{\rm stat} \pm 0.0017_{\rm syst}$ |
| 271                        | $2.125 \pm 0.375$ [24]                       | $2.7\pm0.3_{ m stat}\pm0.4_{ m syst}$                |
| 272                        | $82.5 \pm 12.5$ [19]                         | $129.9 \pm 0.4_{\rm stat} \pm 5.8_{\rm syst}$        |
| 291                        | $2.00 \pm 0.37$ [19]                         | $1.99 \pm 0.01_{\rm stat} \pm 0.09_{ m syst}$        |
| 352                        | $8.125 \pm 1.375$ [19]                       | $14.9 \pm 0.4_{\rm stat} \pm 0.7_{\rm syst}$         |
|                            |                                              |                                                      |

Measured resonance strengths against literature



#### SUMMARY

- Recent efforts by LUNA have focused on studying all the proton capture processes involved in the NeNa cycle
- New results on the <sup>20</sup>Ne(p,γ)<sup>21</sup>Na reaction provide refined reaction rate that affects multiple astrophysical scenarios
- The preliminary analysis on the <sup>21</sup>Ne(p,γ)<sup>22</sup>Na shows new transitions in the <sup>22</sup>Na nucleus and an enhancement the reaction rate
- The last reaction of the NeNa cycle, namely the <sup>23</sup>Na(p,a)<sup>20</sup>Ne, is currently under study

#### The LUNA collaboration

- A. Compagnucci, F. Ferraro, M. Junker, R. Gesuè, T. Chillery | INFN LNGS /\*GSSI, Italy
- C. Broggini, A. Caciolli, P. Marigo, R. Menegazzo, D. Piatti, J. Skowronski, S. Turkat | Università di Padova and INFN Padova, Italy
- A. Formicola, C. Gustavino | INFN Roma 1, Italy
- D. Bemmerer, A. Boeltzig, E. Masha | HZDR Dresden , Germany
- L. Csedreki, Z. Elekes, Zs. Fülöp, Gy. Gyürky, T. Szücs | MTA-ATOMKI Debrecen, Hungary
- M. Lugaro | Konkoly Observatory,n) and spallation Hungarian Academy of Sciences,n) and spallation Budapest, Hungary
- O. Straniero | INAF Osservatorio Astronomico di Collurania, Italy
- P. Corvisiero, P. Prati, S. Zavatarelli, F. Casaburo | Università di Genova and INFN Genova, Italy
- R. Depalo, A. Guglielmetti, G. Gosta | Università di Milano and INFN Milano, Italy
- C. Ananna, A. Best, D. Dell'Aquila, A. Di Leva, G. Imbriani, D. Mercogliano, D. Rapagnani | Università di Napoli and INFN Napoli, Italy
- F. Cavanna, G. Gervino, P. Colombetti | Università di Torino and INFN Torino, Italy
- M. Aliotta, L. Barbieri, C. Bruno, T. Davinson | University of Edinburgh, United Kingdom
- F. Barile, G.F. Ciani, V. Paticchio, L. Schiavulli | Università di Bari and INFN Bari, Italy
- R. Perrino | INFN Lecce, Italy
- M. Campostrini, V. Rigato | INFN LNL, Italy

