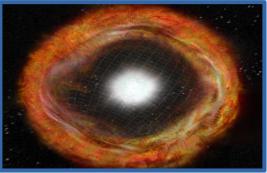
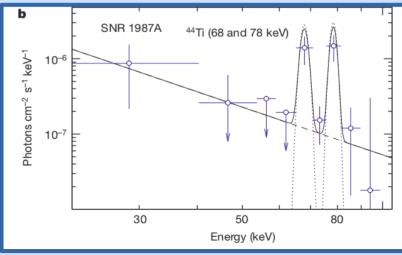
Possible Insight to the Explosion Mechanism of Core Collapse Supernovae Through y-ray Spectroscopy of ⁴⁶Cr

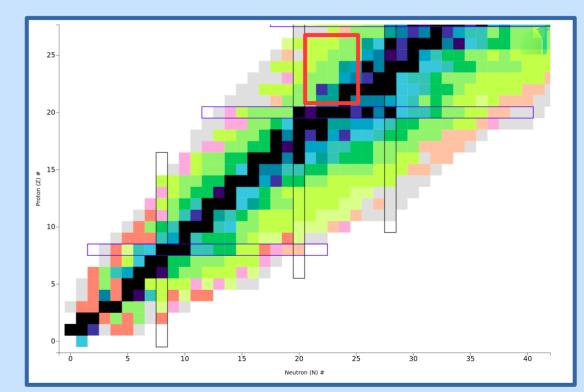

Chris Cousins

NPA-XI 2024

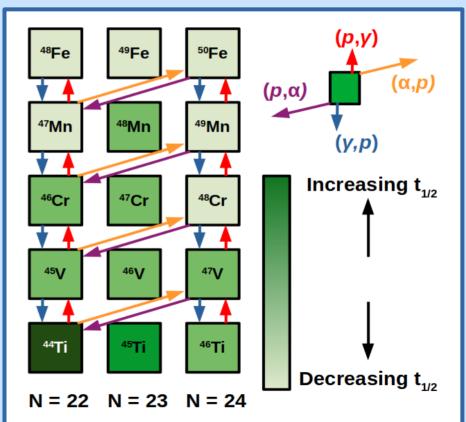


Motivation and Astrophysical Background

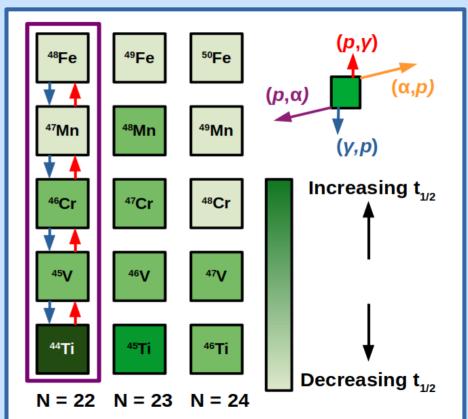
- Uncertainty in explosion mechanism of core collapse supernovae (CCSN)
- New insight observing abundances of ⁴⁴Ti cosmic γ rays (t_{1/2} = 60 yr) – INTEGRAL
- Mass cut point of the star can be found – key hydrodynamic property of supernovae
- Road block! uncertainty in nuclear reactions that destroy ⁴⁴Ti – most notably ⁴⁵V(p,γ)⁴⁶Cr



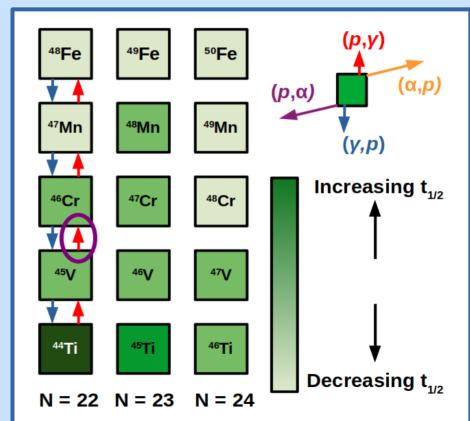
Bill Saxton (NRAO/AUI/NSF)

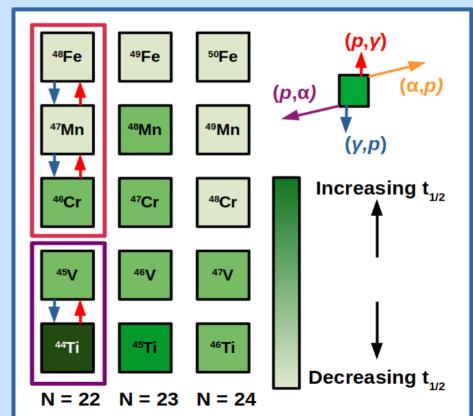

SA Grebenev et al. Nature 490(7420) (2012), p.373–375. 2

- Shock wave breaks nuclei into free nucleons and α particles
- T \downarrow Reassemble back into nuclei
- Cluster of nuclei around ${\rm f}_{\rm 7/2}$ shell in equilibrium



https://www.nndc.bnl.gov/

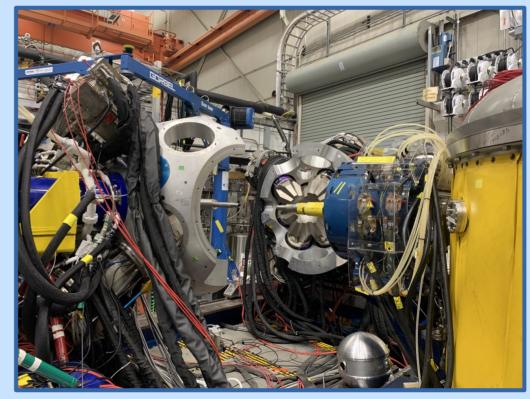

- Shock wave breaks nuclei into free nucleons and $\boldsymbol{\alpha}$ particles
- T \downarrow Reassemble back into nuclei
- Cluster of nuclei around ${\rm f}_{\rm 7/2}$ shell in equilibrium


- Shock wave breaks nuclei into free nucleons and $\boldsymbol{\alpha}$ particles
- T \downarrow Reassemble back into nuclei
- Cluster of nuclei around $f_{7/2}$ shell in equilibrium
- T ↓ Isotone chain N=22 separates to form its own (*p*,*y*)-(*y*,*p*) equilibrium

- Shock wave breaks nuclei into free nucleons and $\boldsymbol{\alpha}$ particles
- T \downarrow Reassemble back into nuclei
- Cluster of nuclei around $f_{7/2}$ shell in equilibrium
- T ↓ Isotone chain N=22 separates to form its own (p,y)-(y,p) equilibrium
- *p*-capture on ⁴⁵V importance identified in sensitivity studies [1] – high Q value

- Shock wave breaks nuclei into free nucleons and $\boldsymbol{\alpha}$ particles
- T \downarrow Reassemble back into nuclei
- Cluster of nuclei around $f_{7/2}$ shell in equilibrium
- T ↓ Isotone chain N=22 separates to form its own (*p*,*y*)-(*y*,*p*) equilibrium
- *p*-capture on ⁴⁵V importance identified in sensitivity studies [1] – high Q value
- ⁴⁴Ti and ⁴⁵V cut off from the rest of N=22 isotone chain – abundance determined at freeze out

^[1] G. Magkotsios et al. The Astrophysical Journal Supplement Series 191.1 (2010), p. 66.


Finding the Reaction Rate

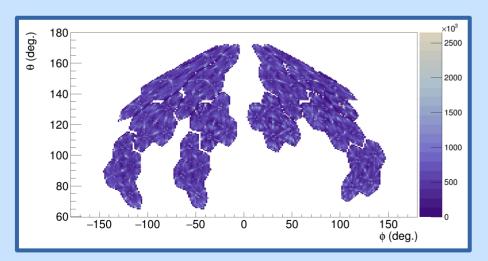
- Reaction governed by low-spin resonant states above proton separation energy $(S_p = 4882(22) \text{ keV})$
- Performing γ-ray spectroscopy of ⁴⁶Cr identifying proton-unbound resonant states
- Use resonant energies and spins to place constraints on ${}^{45}V(p,y){}^{46}Cr$ stellar reaction rate in CCSN

$$N_{A} < \sigma\nu > = \frac{1.5399 \times 10^{11}}{(\mu T_{9})^{3/2}} \sum_{i} (\omega\gamma)_{i} e^{-11.605 E_{R,i}/T_{9}}$$
$$(\omega\gamma)_{i} = \left(\frac{2J_{R}+1}{(2j_{0}+1)(2j_{1}+1)}\right) \frac{\Gamma_{a}\Gamma_{\gamma}}{\Gamma_{a}+\Gamma_{\gamma}}$$

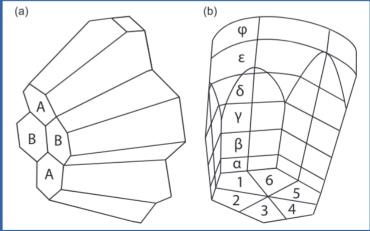
Experimental Set-Up

- GRETINA+FMA, ATLAS facility, Argonne National Lab, March 2021
 - 120 MeV ³⁶Ar beam
 - ~200 µg.cm-² thick ¹²C target
 - Produces ⁴⁶Cr in excited states via fusionevaporation

Fusion-Evaporation Channels

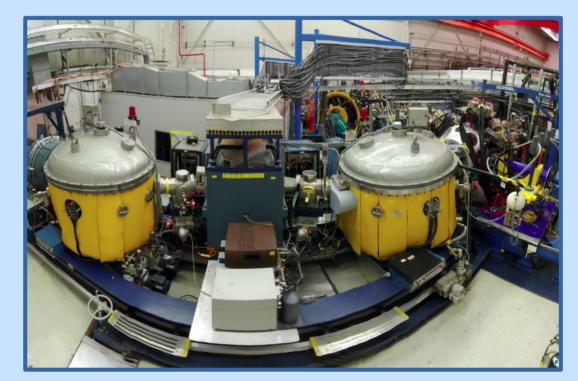

- Can't measure directly ${}^{_{45}}\text{V}$ t_{_{1/2}} ~ 500 ms
- Fusion-evaporation reaction –
 ¹²C(³⁶Ar,2n)⁴⁶Cr
- Other channels dominate this reaction – *p*-rich side of stability
- Contamination from oxygen on target – significant production of ⁴⁹Cr

Channel	Mode	Yield (%)		
⁴⁶ Ti	2р	28.6		
⁴⁶ V	pn	18.5		
⁴⁵ Ti	2pn	16.9		
⁴³ Sc	αρ	16.4		
⁴⁰ Ca	2α	9.02		
I	i	÷		
⁴⁶ Cr	2n	0.025		
Calculations provided by DACE4				


Calculations provided by PACE4

GRETINA

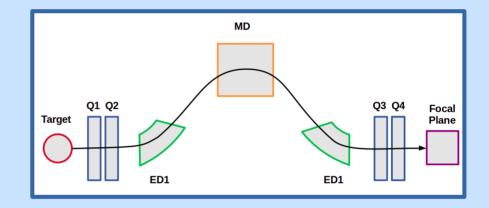
- State-of-the-art HPGe γ ray detector array
- Detect prompt γ rays in coincidence with recoils
- γ-ray tracking reconstructs Compton scattered γ-rays – high efficiency
- Operated with 11 modules, total of 44 crystals

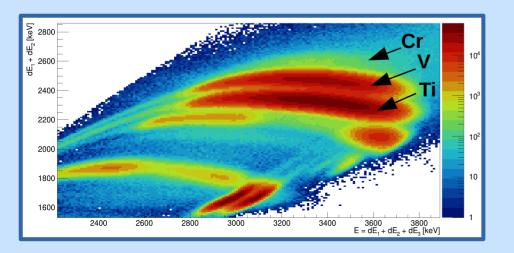


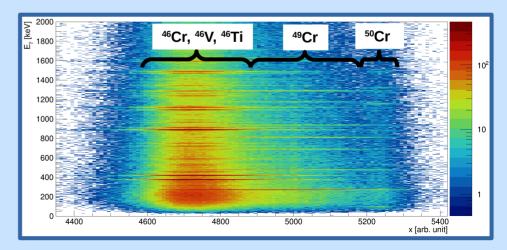
S. Paschalis et al. Nuclear Instruments and Methods in Physics Research Section A 709 (2013), p.44-55.

FMA

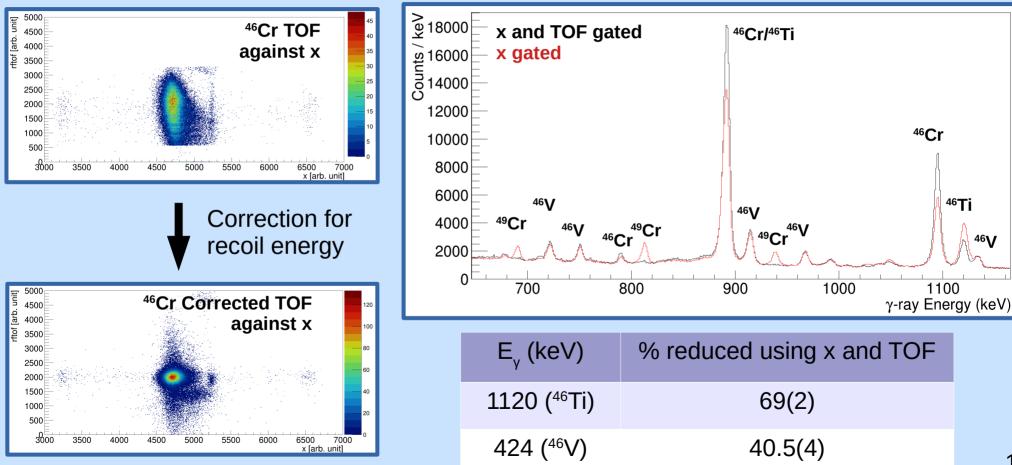
- Separates recoils by mass/charge (A/Q) at the focal plane
- Ionisation chamber

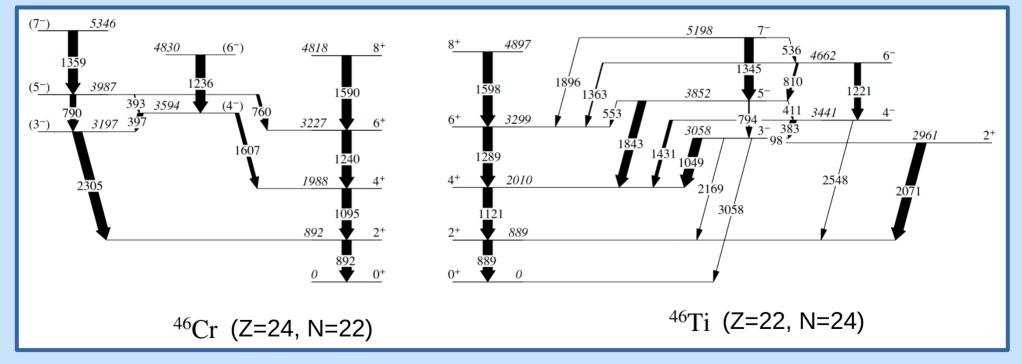

 identify recoil
 isotopes by their Z



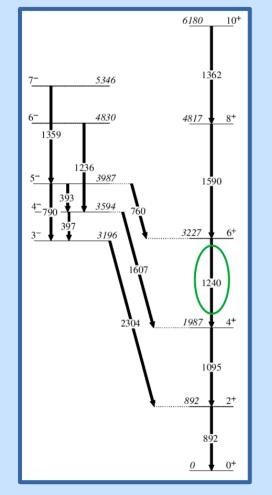

https://www.anl.gov/phy/fragment-mass-analyzer

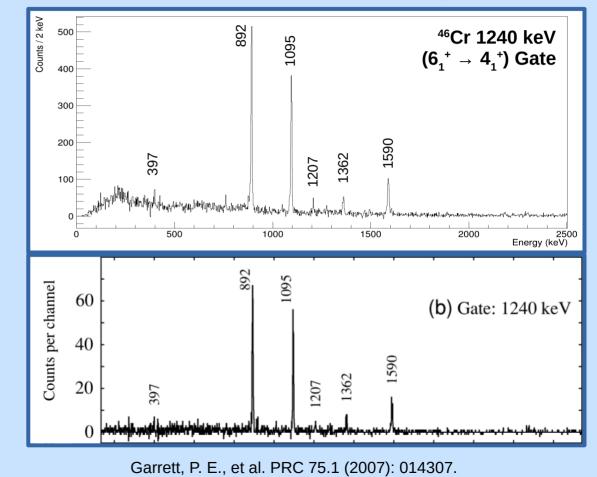
Z and A/Q Gate

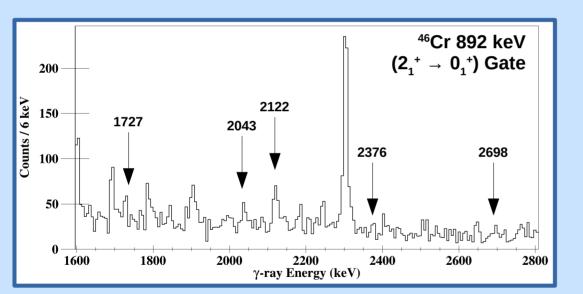

$$-\left\langle \frac{dE}{dx} \right\rangle \approx \frac{4\pi e^4}{m_e} \frac{Z_p^2}{\nu^2} \left(N_A \rho \frac{Z_t}{M_t} \right) \ln\left(\frac{2m_e \nu^2}{I}\right)$$



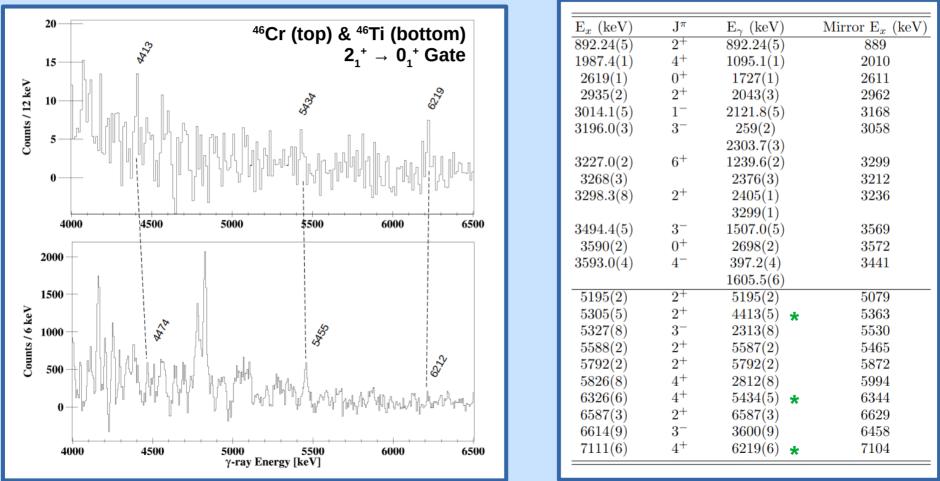
TOF Gate


Mirror Nucleus Comparison

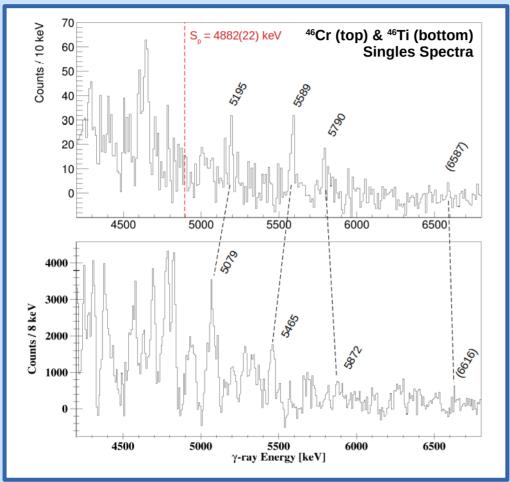

T = 1, A = 46 Mirror Pair


Garrett, P. E., et al. PRC 75.1 (2007): 014307.

Results – Previous Studies Comparison

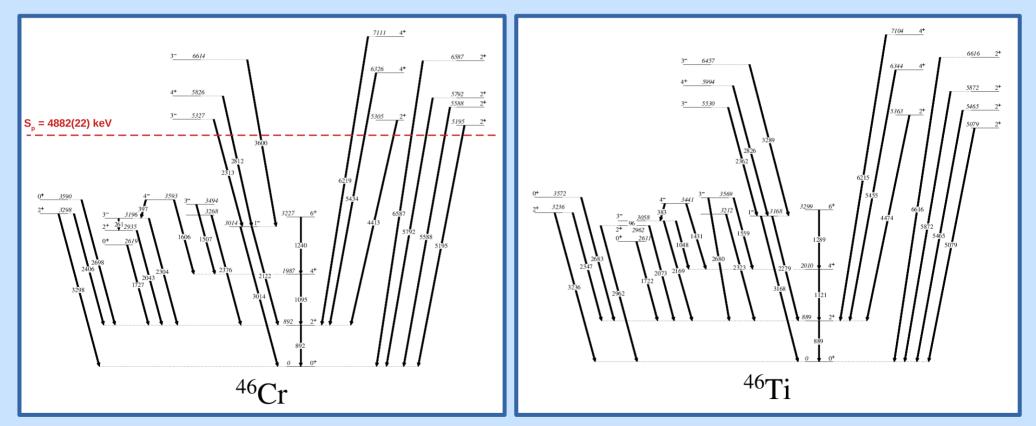


Results – Resonance States

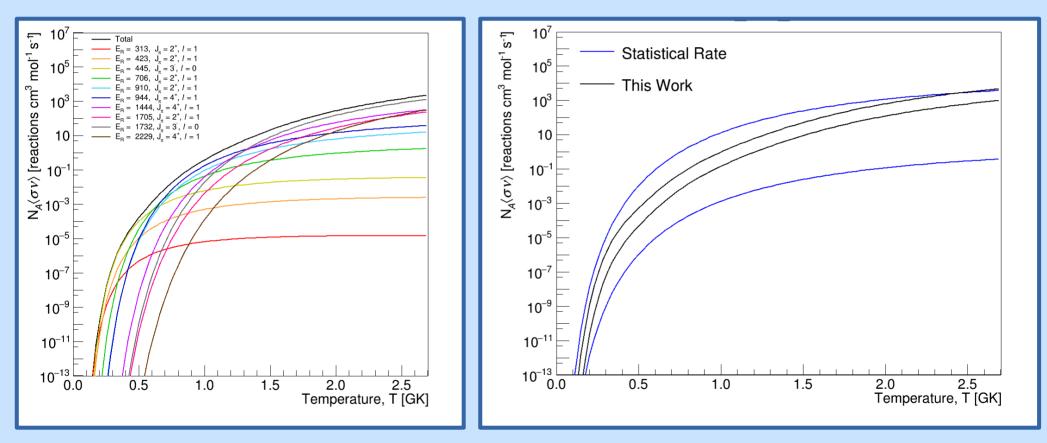


$E_x (keV)$	J^π	$E_{\gamma} (keV)$	Mirror E_x (keV)
892.24(5)	2^{+}	892.24(5)	889
1987.4(1)	4^{+}	1095.1(1)	2010
2619(1)	0^+	1727(1) *	2611
2935(2)	2^{+}	2043(3) *	2962
3014.1(5)	1^{-}	2121.8(5) *	3168
3196.0(3)	3^{-}	259(2)	3058
		2303.7(3)	
3227.0(2)	6^{+}	1239.6(2)	3299
3268(3)		2376(3) \star	3212
3298.3(8)	2^{+}	2405(1)	3236
		3299(1)	
3494.4(5)	3^{-}	1507.0(5)	3569
3590(2)	0^+	2698(2) *	3572
3593.0(4)	4^{-}	397.2(4)	3441
		1605.5(6)	
5195(2)	2^{+}	5195(2)	5079
5305(5)	2^{+}	4413(5)	5363
5327(8)	3^{-}	2313(8)	5530
5588(2)	2^{+}	5587(2)	5465
5792(2)	2^{+}	5792(2)	5872
5826(8)	4^{+}	2812(8)	5994
6326(6)	4^{+}	5434(5)	6344
6587(3)	2^{+}	6587(3)	6629
6614(9)	3^{-}	3600(9)	6458
7111(6)	4+	6219(6)	7104

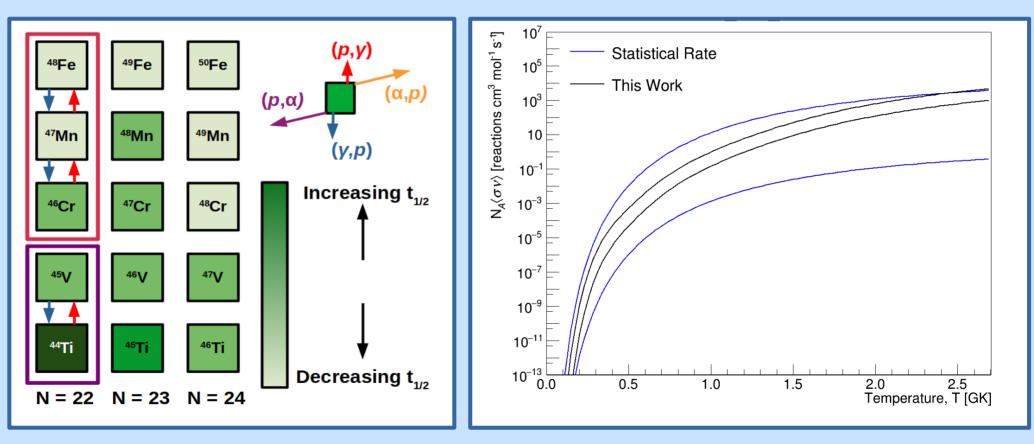
Results – Resonance States



Results – Resonance States

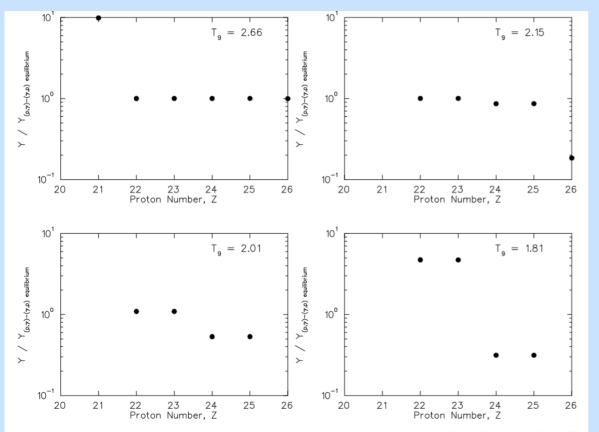


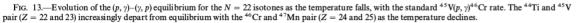
$\mathbf{E}_x \; (\mathrm{keV})$	J^{π}	$\rm E_{\gamma}~(keV)$	Mirror \mathbf{E}_x (keV)
892.24(5)	2^{+}	892.24(5)	889
1987.4(1)	4^{+}	1095.1(1)	2010
2619(1)	0^+	1727(1)	2611
2935(2)	2^{+}	2043(3)	2962
3014.1(5)	1^{-}	2121.8(5)	3168
3196.0(3)	3^{-}	259(2)	3058
		2303.7(3)	
3227.0(2)	6^{+}	1239.6(2)	3299
3268(3)		2376(3)	3212
3298.3(8)	2^{+}	2405(1)	3236
		3299(1)	
3494.4(5)	3^{-}	1507.0(5)	3569
3590(2)	0^{+}	2698(2)	3572
3593.0(4)	4^{-}	397.2(4)	3441
		1605.5(6)	
5195(2)	2^{+}	5195(2) \star	5079
5305(5)	2^{+}	4413(5)	5363
5327(8)	3^{-}	2313(8)	5530
5588(2)	2^{+}	5587(2) *	5465
5792(2)	2^{+}	5792(2) \star	5872
5826(8)	4^{+}	2812(8)	5994
6326(6)	4^{+}	5434(5)	6344
6587(3)	2^{+}	6587(3) *	6629
6614(9)	3^{-}	3600(9)	6458
7111(6)	4^{+}	6219(6)	7104


Results – Partial Level Scheme

Results – Reaction Rate

Results – Reaction Rate


Summary and Future Work

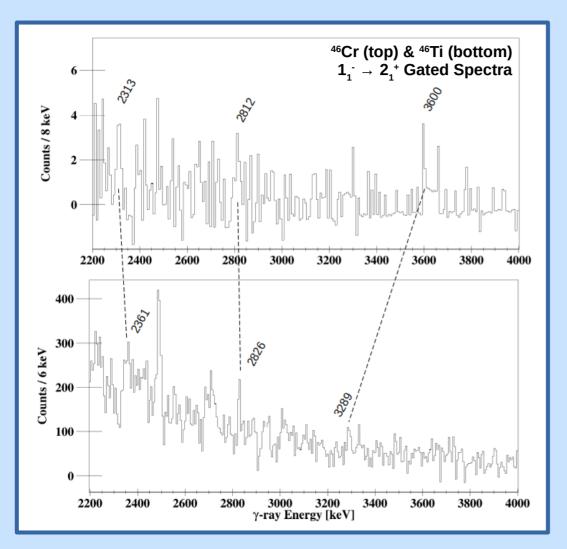

- ⁴⁵V(p,y)⁴⁶Cr reaction rate is key to the destruction of ⁴⁴Ti during the αrich freeze-out of CCSN
- First identification of 17 y-rays, leading to observation of 10 proton-unbound states in $^{\rm 46}Cr$
- Towards upper limit of previously known rate more ⁴⁴Ti flows out of ⁴⁴Ti-⁴⁵V cluster
- Finalise reaction rate; compare resonance states to shell model calculations
- Transfer reaction to get C²S, mass measurement of ⁴⁶Cr

Acknowledgments

G. Lotay¹, C. Campbell², L. Canete¹, M.P. Carpenter³, W.N. Catford¹, K.A. Chipps⁴, D.T. Doherty¹, J. Henderson¹, J. José⁵, A.R.L. Kennington¹, T. Lauritsen³, J. Li², M. Moukaddam⁶, C. Müller-Gatermann³, C. O'Shea¹, S.D. Pain⁴, C. Paxman¹, B.J. Reed¹, P.H. Regan¹, W. Reviol³, D.Seweryniak³, M. Siciliano³, G.L. Wilson^{3,7}, S. Zhu⁸

¹Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH. UK
 ²Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
 ³Argonne National Laboratory, Argonne, Illinios 60439, USA
 ⁴Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
 ⁵Universitat Politècnica De Catalunya, 08034 Barcelona, Spain
 ⁶Université de Strasbourg, IPHC, 67037 Strasbourg, France
 ⁷Louisiana State University, Baton Rouge, Louisiana 70803, USA
 ⁸Brookhaven National Laboratory, National Nuclear Data Center, New York 11973, USA

TABLE 5Order of Importance of Reactions Producing 44 Ti at $\eta = 0^a$			
Reaction	Slope		
	$\begin{array}{r} -0.394 \\ +0.386 \\ -0.361 \\ +0.137 \\ +0.102 \\ +0.037 \\ -0.024 \\ -0.017 \\ +0.013 \\ +0.011 \\ +0.008 \\ -0.005 \\ +0.002 \\ +0.002 \\ +0.002 \\ +0.002 \end{array}$		


^a Order of importance of reactions producing ⁴⁴Ti at $\eta = 0$ according to the slope of $X(^{44}\text{Ti})$ near the standard reaction rates. Clayton, D.D., Jin, L. and Meyer, B.S., 1998. Nuclear reactions governing the nucleosynthesis of 44Ti. The Astrophysical Journal, 504(1), p.500.

	REACTION RATE M	ultiplied by 1/100	REACTION RATE MULTIPLIED BY 100	
Rank	Reaction	⁴⁴ Ti Change (percent)	Reaction	⁴⁴ Ti Change (percent)
1	$^{44}\text{Ti}(\alpha, p)^{47}\text{V}$	+173	⁴⁵ V(p, γ) ⁴⁶ Cr	-98
2	$\alpha(2\alpha, \gamma)^{12}C$	-100	$\alpha(2\alpha, \gamma)^{12}C$	+67
3	${}^{40}Ca(\alpha, \gamma){}^{44}Ti$	-72	$^{44}\text{Ti}(\alpha, p)^{47}\text{V}$	-89
4	$^{45}V(p, \gamma)^{46}Cr$	+ 57	$^{44}\text{Ti}(\alpha, \gamma)^{48}\text{Cr}$	-61
5	⁵⁷ Ni(p, γ) ⁵⁸ Cu	-47	57 Co(p, n) 57 Ni	+25
6	57 Co (p, n) 57 Ni	-33	$^{40}Ca(\alpha, \gamma)^{44}Ti$	+22
7	$^{13}N(p, \gamma)^{14}O$	-16	${}^{57}Ni(n, \gamma){}^{58}Ni$	+10
8	${}^{58}Cu(p, \gamma){}^{59}Zn$	-14	54 Fe(α , <i>n</i>) 57 Ni	+9.4
9	36 Ar(α , p) 39 K	-11	${}^{36}\text{Ar}(\alpha, p){}^{39}\text{K}$	+ 5.5
10	${}^{12}C(\alpha, \gamma){}^{16}O$	+3.5	${}^{36}{\rm Ar}(\alpha, \gamma){}^{40}{\rm Ca}$	+ 5.3

TABLE	4	
-------	---	--

Order of Importance of Reactions Producing 44 Ti at $\eta = 0$

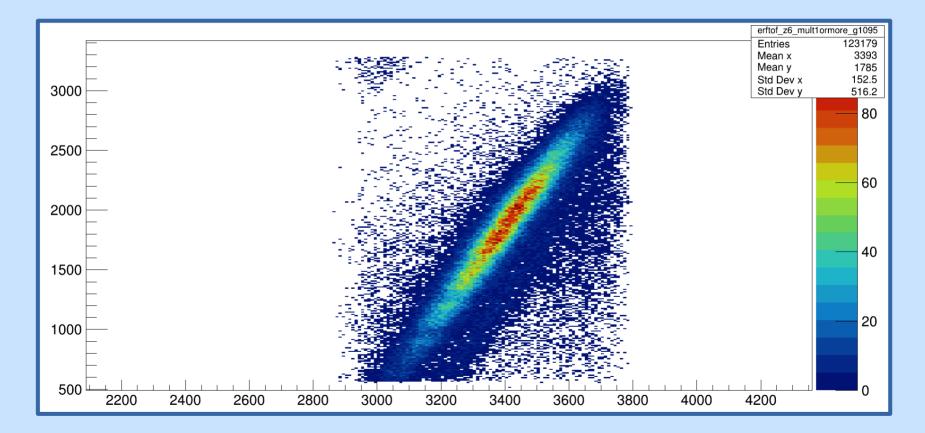
Clayton, D.D., Jin, L. and Meyer, B.S., 1998. Nuclear reactions governing the nucleosynthesis of 44Ti. The Astrophysical Journal, 504(1), p.500.

$E_x (keV)$	J^{π}	$E_{\gamma} (keV)$	Mirror E_x (keV)
892.24(5)	2^{+}	892.24(5)	889
1987.4(1)	4^{+}	1095.1(1)	2010
2619(1)	0^{+}	1727(1)	2611
2935(2)	2^{+}	2043(3)	2962
3014.1(5)	1^{-}	2121.8(5)	3168
3196.0(3)	3^{-}	259(2)	3058
		2303.7(3)	
3227.0(2)	6^{+}	1239.6(2)	3299
3268(3)		2376(3)	3212
3298.3(8)	2^{+}	2405(1)	3236
		3299(1)	
3494.4(5)	3^{-}	1507.0(5)	3569
3590(2)	0^{+}	2698(2)	3572
3593.0(4)	4^{-}	397.2(4)	3441
		1605.5(6)	
5195(2)	2^{+}	5195(2)	5079
5305(5)	2^{+}	4413(5)	5363
5327(8)	3^{-}	$2313(8) \star$	5530
5588(2)	2^{+}	5587(2)	5465
5792(2)	2^{+}	5792(2)	5872
5826(8)	4^{+}	2812(8) *	5994
6326(6)	4^{+}	5434(5)	6344
6587(3)	2^{+}	6587(3)	6629
6614(9)	3-	3600(9) *	6458
7111(6)	4^{+}	6219(6)	7104

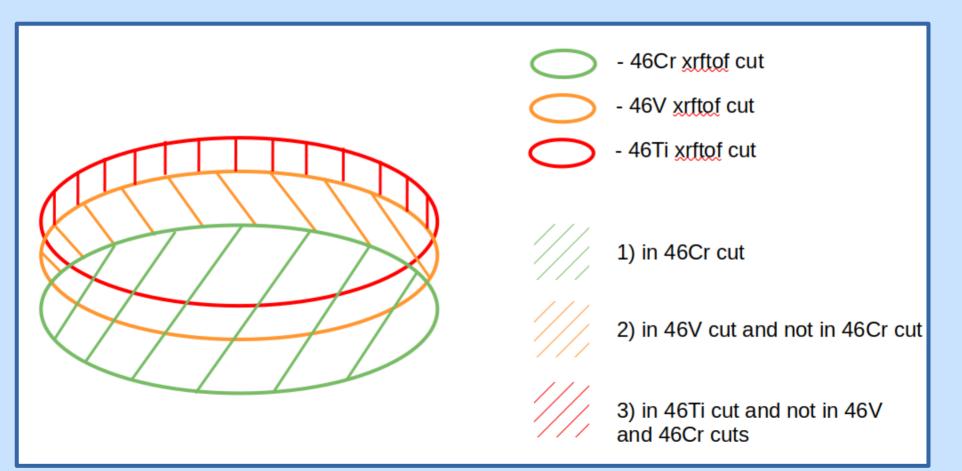
PACE4 Calculations

On 12C

1. Yields of residual nuclei

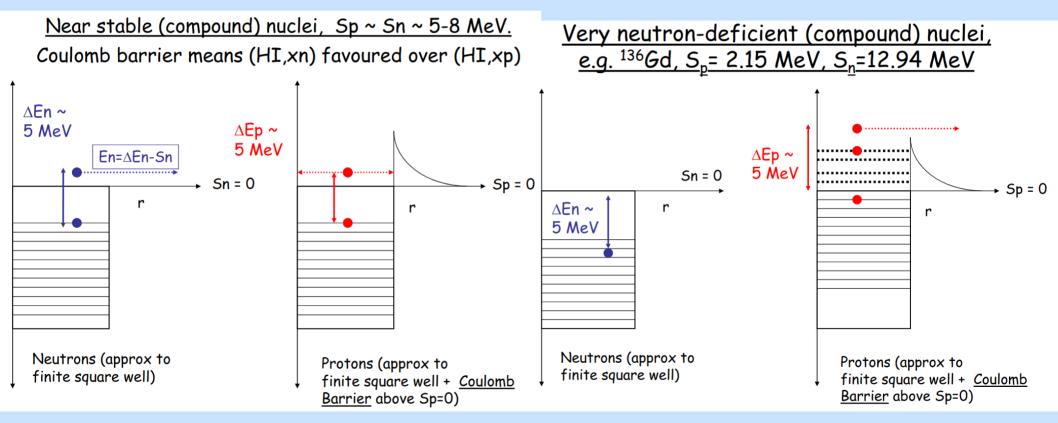

z	Ν	Α	events	percent	x-section(mb)
24	23	47 Cr	63	0.063%	0.595
23	24	47 V	380	0.38%	3.59
24	22	46 Cr	25	0.025%	0.236
23	23	46 V	18520	18.5%	175
22	24	46 Ti	28646	28.6%	270
23	22	45 V	10	0.01%	0.0944
22	23	45 Ti	16937	16.9%	160
21	24	45 Sc	5540	5.54%	52.3
22	22	44 Ti	1193	1.19%	11.3
22	21	43 Ti	364	0.364%	3.44
21	22	43 Sc	16405	16.4%	155
21	21	42 Sc	44	0.044%	0.415
20	22	42 Ca	397	0.397%	3.75
20	20	40 Ca	9020	9.02%	85.2
19	20	39 K	2455	2.46%	23.2
TOT/	٨L		99999	100	944.208

On 16O


1. Yields of residual nuclei

z	N	Α	events	percent	x-section(mb)
26	25	51 Fe	3	0.003%	0.0276
25	26	51 Mn	21	0.021%	0.193
26	24	50 Fe	33	0.033%	0.303
25	25	50 Mn	3489	3.49%	32.1
24	26	50 Cr	5878	5.88%	54.1
25	24	49 Mn	247	0.247%	2.27
24	25	49 Cr	40569	40.6%	373
23	26	49 V	15421	15.4%	142
24	24	48 Cr	235	0.235%	2.16
23	25	48 V	600	0.6%	5.52
22	26	48 Ti	8	0.008%	0.0736
24	23	47 Cr	686	0.686%	6.31
23	24	47 V	14657	14.7%	135
23	23	46 V	2222	2.22%	20.4
22	24	46 Ti	12585	12.6%	116
22	23	45 Ti	11	0.011%	0.101
21	24	45 Sc	3	0.003%	0.0276
22	22	44 Ti	2326	2.33%	21.4
21	22	43 Sc	932	0.932%	8.57
20	20	40 Ca	73	0.073%	0.671
TOT/	٨L		99999	100	919.564

TOF Dependence on Recoil Energy



X-RFTOF Gates

Decay Channels

• Why neutron-deficient compound nuclei emit neutron over protons in fusion-evaporation

Nuclear structure studies of high-spin states with large arrays, Regan 2016