

Probing the equation of state of dense matter with neutron stars

Anthea F. Fantina (anthea.fantina[AT]ganil.fr)

18th Russbach School on Nuclear Astrophysics, Russbach am Pass Gschutt (Austria), 12-1<u>7 March 2023</u>

- Introduction
 - Neutron-star (NS) properties
- Equation-of-state (EoS) modelling
 - NS EoS
 - Outer crust
 - Inner crust
 - Homogeneous matter

see also A. Raduta's talk

- EoS and neutron-star (NS) properties
 - How to build a global model of NS ?
 - How can we get constraints ?
 - Bayesian analysis

see also M. Beznogov's talk

Conclusions and perspectives

<u>N.B.</u>: In this talk, T = 0 and beta-equilibrium matter

What is a NS?

A. F. Fantina

Credits: http://chandra.harvard.edu; http://large.stanford.edu

Scenarios for "T = 0" NS EoS

Mature neutron stars – cold (NSs)

$$\approx 1 - 2M_{\odot}$$

$$\approx 10 \text{ km}$$

$$\approx 10^{14} - 10^{15} \text{ g cm}^{-3}$$

$$< 10^8 \text{ K}$$

NB: $T = 0 \Leftrightarrow T \ll T_F$

Binary NS mergers ("cold" in inspiral phase)

Simulation MPA Garching (Goriely, Bauswein, Janka, ApJ 738, 2011)

http://www.physics.montana.edu

Cooling

Potekhin et al., MNRAS 496, 5052 (2020)

Gliches

Fortuitous discovery of a pulsar

Jocelyn Bell in 1966

1967: J. Bell, PhD thesis at Cavendish Laboratory, Cambridge on radio sources. With a 3.7m diameter telescope, she discovered a very regular source, with a period of 1.3373012 s.

This source was called LGM ("Little Green Man"); a journalist from Daily Telegraph called this source "*Pulsar*". It is now known as PSR B1919+21.

In 1974, A. Hewish (Bell's PhD supervisor) received the Nobel prize...

Fortuitous discovery of a pulsar

Jocelyn Bell in 1966

Since 1967, more than 2000 pulsars have been discovered!

Some of them have strong magnetic field

1967: J. Bell, PhD thesis at Cavendish Laboratory, Cambridge on radio sources. With a 3.7m diameter telescope, she discovered a very regular source, with a period of 1.3373012 s.

This source was called LGM ("Little Green Man"); a journalist from Daily Telegraph called this source "*Pulsar*". It is now known as PSR B1919+21.

Manchester et al., AJ 129, 1993-2006 (2005)

Highcharts.com

A. F. Fantina NB: most are inferred, not "direct" observations, so model dependent !

Binary NS merger: simulations

Simulation by S. Rosswog, visualisation R. West http://www.ukaff.ac.uk/movies/nsmerger/

Gravitational waves (GW): detection

Predicted by Einstein, observed in 2015 from black-hole merger

→ Nobel Prize in physics 2017 2017 NOBEL PRIZE IN PHYSICS

2017 Nobel Prize Physics - gravitational waves (Weiss, Barish, Thorne) Credits: The Royal Swedish Academy of Sciences. Ill. N. Elmehed

Detection of GW from binary NS merger in 2017 (GW170817)
 → multi-messenger astronomy

LIGO Hanford Observatory, Washington (Credits: C. Gray)

LIGO Livingston Observatory, Louisiana (Credits: J. Giaime)

Virgo detector, Italy (Credits: Virgo Collaboration)

Probing extreme conditions in NSs

Kekelidze et al., EPJ Web of Conf. 70, 00084 (2014)

different states of matter spanned in NSs !

- \rightarrow inhomogeneous, homogeneous, "exotic" particles (? \rightarrow see A. Raduta's talk)
 - + superfluidity, magnetic field, etc.

 \rightarrow not all conditions can be probed in terrestrial labs \rightarrow theoretical models !

Micro to macro through modelling

NS crust (T = 0)

"Cold" (catalysed) NS : T = 0 approx., full (thermodymamic + beta) equilibrium

Chamel & Haensel, Liv. Rev. Relativ. 11, 10 (2008); see also Blaschke & Chamel, ASSL 457, 337 (Springer, 2018)

> To obtain the EoS \rightarrow minimisation $\varepsilon(n_B) = E_{WS}/V_{WS} = min$

<u>N.B.</u>: $n_{\rm B}$ = baryon number density, $\rho c^2 = \varepsilon$ mass-energy density !

Nuclei in bcc lattice + electrons: $\epsilon_{WS}(n_B) = \frac{M(A,Z)c^2}{V_{WS}} + \epsilon_e(n_e) + \epsilon_{Coul}$ e-e and e-i int.

A. F. Fantina See e.g. Haensel et al. 2007 (Springer), Oertel et al., Rev. Mod. Phys. (2017), Burgio & Fantina, ASSL 457 (2018), Blaschke & Chamel, ASSL 457, 337 (Springer, 2018) for a review and refs. ttherein for HFB models shown see also Goriely et al. 2010, 2016, Pearson et al., MNRAS 481, 2994 (2018)

NS outer crust: up to neutron drip

• Nuclei in bcc lattice + electrons: $\epsilon_{WS}(n_B) = \frac{M(A,Z)c^2}{V_{WS}} + \epsilon_e(n_e) + \epsilon_{Coul}$ e-e and e-i int.

Only microscopic inputs are nuclear masses \rightarrow Experimental or mass models

very neutron-rich nuclei imprint of shell structure

A. F. Fantina (2018), Blaschke & Chamel, ASSL 457, 337 (Springer, 2018) for a review and refs. ttherein 15 for HFB models shown see also Goriely et al. 2010, 2016, Pearson et al., MNRAS 481, 2994 (2018)

NS outer crust: composition and EoS

dependence on the many-mody method EoS relatively well constrained

see e.g. Haensel et al. 2007 (Springer), Oertel et al., Rev. Mod. Phys. (2017), Burgio & Fantina, ASSL 457 A. F. Fantina (2018), Blaschke & Chamel, ASSL 457, 337 (Springer, 2018) for a review and refs. therein 16

NS inner crust: until cc transition (1)

Nuclei in bcc lattice + electrons + "free" neutrons → nuclear modelling

$$\epsilon_{\rm WS}(n_B) = \frac{M(A,Z)c^2}{V_{\rm WS}} + \epsilon_e(n_e) + \epsilon_{\rm Coul} + \epsilon_{\rm (n_gn)} + \epsilon_{\rm int}$$

$$\epsilon_{\rm WS}(n_B) = n_n m_n c^2 + n_p m_p c^2 + \epsilon_N + \epsilon_e + \epsilon_{\rm Coul}$$

$$\epsilon_{\rm WS}(n_B) = n_n m_n c^2 + n_p m_p c^2 + \epsilon_N + \epsilon_e + \epsilon_{\rm Coul}$$

 \rightarrow different methods:

1. Compressible liquid-drop (CLD) model

- separation nucleons "inside"/"outside" nuclei (fig. adapted from Carreau, PhD thesis (2020))

- nuclear energy given by sum of contribution (bulk, surface, Coulomb)

2. (Extended) Thomas-Fermi ((E)TF)

- smooth density profiles
- nuclear energy functional of density and gradients
- consistent treatment nucleons "inside"/"outside"

3. Hartree-Fock / Hartree-Fock Bogoliubov

- quantum calculations \rightarrow independent particles/qp

outer crust

total r-cluster

I-gas

r [fm]

10km

。 一^{0.10} 月 0.08

> ≈ 0.06 0.04

> > 0.02

0.00

A. F. Fantina see e.g. Haensel et al. 2007 (Springer), Oertel et al., Rev. Mod. Phys. (2017), Burgio & Fantina, ASSL 45717 (2018), Blaschke & Chamel, ASSL 457, 337 (Springer, 2018) for a review and refs. therein

see e.g. Haensel et al. 2007 (Springer), Oertel et al., Rev. Mod. Phys. (2017), Burgio & Fantina, ASSL 457 A. F. Fantina (2018), Blaschke & Chamel, ASSL 457, 337 (Springer, 2018) for a review and refs. therein 18

NS inner crust: composition and EoS

Pearson et al., MNRAS 481, 2994 (2018)

Sharma et al., A&A 584, A103 (2015)

model-dependence in many-body method
 model-dependence in functional

see e.g. Haensel et al. 2007 (Springer), Oertel et al., Rev. Mod. Phys. (2017), Burgio & Fantina, ASSL 457 A. F. Fantina (2018), Blaschke & Chamel, ASSL 457, 337 (Springer, 2018) for a review and refs. therein ¹⁹

Homogeneous matter: various approaches

- Ab-initio ("microscopic") approaches based on quantum many-body theories from realistic nuclear interactions (variational methods, (D)BHF, chiral EFT, Monte-Carlo, Green's func., …)
 - → usually restricted to homogeneous matter (core)
- Phenomenological approaches based on effective interactions with parameters adjusted to reproduced nuclear properties (EDF e.g. Skyrme / Gogny, meta-models, ...)

→ also applicable for inhomogeneous matter (crust + core)

A. F. Fantina

for a review see e.g. Haensel et al. 2007 (Springer), Oertel et al., Rev. Mod. Phys. (2017), Burgio & Fantina, ASSL 457 (2018); Burgio et al., Prog. Part. Nucl. Phys. 120, 103879 (2021)

Homogeneous matter: mean-field approx.

- Star is neutral \rightarrow baryons + leptons (e⁻ and possibly μ in core); themodynamic limit $\epsilon_{tot} = \epsilon_B + \epsilon_l$ T = 0
- If only nucleons: (see A. Raduta's talk for "exotica")

 $e_{n,p} = \sqrt{(m_{n,p}^{\star}c^2)^2 + (\hbar ck)^2 + V_{n,p}(n_n, n_p)}$ $\epsilon_B = \epsilon_n(n_n) + \epsilon_p(n_p) = \epsilon_{\mathrm{FG},n+p} + \epsilon_n(n_n, n_p) \xrightarrow{\text{Energy-density functional}} \bullet \text{ to be determined}$

- → non-relativistic functionals: Skyrme (zero-range effective interaction), Gogny (finiterange effective interaction) with parameters constrained by experiments but ad-hoc density dependence to mimic many-body effects
- → relativistic mean field (RMF) based on effective Lagrangian, but ad-hoc density dependent or non-linear couplings to mimic many-body effects
 - a functional form has to be chosen ! Extrapolations ?
- Plus beyond mean-field: e.g., pairing

for a review see e.g. Ring & Schuck (Springer 2004), Bender et al., Rev. Mod. Phys. 75, 121 (2003), Duguet (Springer 2014), Baldo & Burgio, Rep. Prog. Phys. 75, 026301 (2012), Carlson et al., Rev. Mod. Phys. 87, 1067 (2015), Haensel et al. 2007 (Springer), Oertel et al., Rev. Mod. Phys. (2017), Burgio & Fantina, ASSL 457 (2018); Burgio et al., Prog. Part. Nucl. Phys. 120, 103879¹(2021)

NS EoS: crust and core

 \succ higher uncertainties in the core \rightarrow uncertainties in the functional

how these uncertainties propagate in NS observables ?

A. F. Fantina see e.g. Haensel et al. 2007 (Springer), Oertel et al., Rev. Mod. Phys. (2017), Burgio & Fantina, ASSL 457 (2018), Blaschke & Chamel, ASSL 457, 337 (Springer, 2018) for a review and refs. therein

$EoS \leftrightarrow NS$ (static) observables (1) **TOV** \rightarrow *M*(*R*) (Tolmann 1939; Oppenheimer&Volkoff 1939; see also Haensel, Potekhin, Yakovlev, Springer 2007) . $\frac{\mathrm{d}\boldsymbol{P}(\boldsymbol{r})}{\mathrm{d}\boldsymbol{r}} = -\frac{G\rho(\boldsymbol{r})\mathcal{M}(\boldsymbol{r})}{r^2} \left[1 + \frac{\boldsymbol{P}(\boldsymbol{r})}{c^2\rho(\boldsymbol{r})}\right] \left[1 + \frac{4\pi\boldsymbol{P}(\boldsymbol{r})r^3}{c^2\mathcal{M}(\boldsymbol{r})}\right] \left[1 - \frac{2G\mathcal{M}(\boldsymbol{r})}{c^2r}\right]^{-1}$ $\mathcal{M}(r) = 4\pi \int_{0}^{T} \rho(r') r'^2 dr'$ with b.c. $M(r=0) = 0; \rho(r=0) = \rho_{c}$ only EoS $P(\rho)$ is needed ! for each ρ_c (or equivalently P_c) \rightarrow integration $\rightarrow R$, M(r = R)2.0 -og₁₀ *p*(MeV fm⁻³) 1.5 $GR \rightarrow$ one-to-one correspondence M (M $EoS \leftrightarrow NS$ static properties (non-rotating mature NS) 0.5 0.0 10 15 0 10 R (km) Ec/Es Lattimer, Annu. Rev. Part. Nucl. Sci. 62, 485 (2012)

N.B.: GR in slow rotation limit w/o magnetic field !

$EoS \leftrightarrow NS$ (static) observables (2)

but:

- X EoS model dependent !
- X no ab-initio dense-matter calculations in all regimes
 - → phenomenological models
- **X** composition $\leftarrow \rightarrow \text{EoS} \rightarrow M(R)$?
- X role of additional d.o.f. ? → see A. Raduta's talk

- ✓ GR → one-to-one correspondence EoS ← → NS static properties M(R), $\Lambda(M)$... (non-rotating mature NS)
- ✓ Different EoSs ← → different NS properties
 ← → different GW signals
 - trace back to EoS and composition ?

Ozel & Freire, ARAA 54, 401 (2016); see also Burgio & Fantina, ASSL 457, 255 (2018)

$EoS \leftrightarrow NS$ (static) observables (3) Influence of second body \rightarrow eq. for $H(r) \rightarrow \Lambda(M), \Lambda(R)$. (Thorne & Campolattaro 1967) $H''(r) + H'\left(1 - \frac{2G\mathcal{M}(r)}{c^2 r}\right)^{-1} \left[\frac{2}{r} - \frac{2G\mathcal{M}(r)}{c^4}r(\rho(r) - \mathbf{P}(r))\right] + H(r)Q(r, \mathbf{P}(r), \rho(r))$ Earth Moon with b.c. M(r=0) = 0; $\rho(r=0) = \rho_c$; H(r=0) = 0, H'(r=0) = 0Low Tide \blacksquare only EoS $P(\rho)$ is needed ! for each $\rho_c \rightarrow$ integration $\rightarrow k_2 \rightarrow \lambda$ tidal response High Tide High Tide 1500 Low Tide r=0.986 (quadratic) r=0.985 (power law) Skyrme 1000 → tidal polarizability $\Lambda = \lambda(r = R) = \frac{2}{3}k_2 \left(\frac{Rc^2}{GM}\right)^5$ NLWM DDM $\Lambda_{1.4}$ Microscopic 500 $\tilde{\Lambda} = \frac{16}{13} \frac{(M_1 + 12M_2)M_1^4 \Lambda_1 + (M_2 + 12M_1)M_2^4 \Lambda_2}{(M_1 + M_2)^5}$ → can be extracted from GW signal 9 10 12 13 14 11 $R_{1.4}$ [km] Burgio & Vidana, Universe 6, 119 (2020) N.B.: GR in slow rotation limit w/o magnetic field ! A. F. Fantina 25

see e.g. Haensel et al. 2007 (Springer); Hinderer et al., PRD 81, 123016 (2010); Blanchet, Liv. Rev. Relat. 17, 2 (2014)

EoS modelling: different approaches

- Ab-initio ("microscopic") approaches
 based on quantum many-body theories from
 realistic nuclear interactions (variational methods,
 (D)BHF, chiral EFT, Monte-Carlo, Green's func., …
 → usually restricted to homogeneous matter
 (core)
- Phenomenological approaches

based on effective interactions with parameters adjusted to reproduced nuclear properties (EDF e.g. Skyrme/Gogny, meta-models, ...)

→ also applicable for inhomogeneous matter (crust + core)

Agnostic (non-parametric) approaches

- Piecewise polytropes (PP)
- Speed-of-sound models (CSM)
- Spectral functions (SF)
- Gaussian processes (GP)
- → but what about info on composition?

Hebeler et al., ApJ 773, 11 (2013) Landry et al. PRD 101, 123007 (2020)

for a review see e.g. Haensel et al. 2007 (Springer), Oertel et al., Rev. Mod. Phys. (2017), Burgio & Fantina, ASSL 457 (2018) Agnostic approaches, e.g. PP: Reed et al. PRD 2009, Hebeler et al. ApJ 2013, Annala et al. PRL 2018, ...; CSM: Tews et al. ApJ 2018, Tan et al. PRL 2020; Somasundaram et al., PRC 2023; SF: Lindblom 2010, Lindblom & Indik 2014, ...; GP: Land²/ et al. PRD 2020, Essick et al. PRD 2020; Legred et al. PRD 2021, PRD 2022, ...

A choice: meta-model (nucleons)

- **Meta-model** approach for <u>nucleons</u> : flexible functional ("quasi" agnostic) \rightarrow expansion in density and asymmetry around n_{sat} and $\delta = 0$ (with m_{q}^{*} included) $\epsilon_B(n) \approx n \ (e_B(n, \delta = 0) + e_{\text{sym}}(n)\delta^2)$ $x = (n - n_{\text{sat}})/3n_{\text{sat}}$ $\approx n \sum_{m=0}^{4} \frac{1}{m!} \left(\frac{d^m e_{\text{sat}}}{dx^m} \bigg|_{x=0} + \frac{d^m e_{\text{sym}}}{dx^m} \bigg|_{x=0} \delta^2 \right) x^m \quad \delta = (n_n - n_p)/n$ Empirical parameters (bulk) $X_{sat,sym} = E_{sat}, K_{sat}, Q_{sat}, E_{sym}, L_{sym}, K_{sym}, \dots$ $E_{\rm sym} = J = e_{\rm sym}$ $E_{\rm sat} = e_{\rm sat}$ $L_{\text{sym}} = 3n_{\text{sat}} \left. \frac{de_{\text{sym}}}{dx} \right|_{n=n_{\text{sat}},\delta=0}$ $K_{\text{sat}} = 9n_{\text{sat}}^2 \left. \frac{d^2 e_{\text{sat}}}{dx^2} \right|_{n=n_{\text{sat}},\delta=0}$ $\sim 15 - 20$ $K_{\text{sym}} = 9n_{\text{sat}}^2 \left. \frac{d^2 e_{\text{sym}}}{dx^2} \right|_{n=n_{\text{sat}},\delta=0}$ $Q_{\text{sym}} = 27n_{\text{sat}}^3 \left. \frac{d^3 e_{\text{sym}}}{dx^3} \right|_{n=n_{\text{sat}},\delta=0}$ parameters $Q_{\text{sat}} = 27n_{\text{sat}}^3 \left. \frac{d^3 e_{\text{sat}}}{dx^3} \right|_{n=n_{\text{sat}},\delta=0}$ 0.12 ____0.10 € 0.08 ≈ 0.06 0.04
- If one wants to model the crust → + surface and Coulomb term (CLDM)
 → surface parameters

(plus some additional modifications: *m**, low-density corrections, ...)

see e.g. Bulgac et al., PRC 97, 044313 (2018), Margueron et al., PRC 97, 025805 (2018), Carreau et al, EPJA 55, 188 (2019), Tews et al., EPJA 55, 97 (2019), Dinh Thi et al., A&A 654, A114 (2021), Dinh Thi et al., EPJA 57, 296 (2021); 28 Essick et al., PRC 104, 065804 (2021), ... see also M. Jakobs' poster

0.02

20

r [fm]

How can we get constraints?

Nuclear physics exp./ theory

Measure of nuclear properties: •

- masses and radii of nuclei
- collective modes, polarizability
- neutron skins, HIC, flows etc ...
- ab-initio calculations •

Astrophysical observations

- Measure of **NS properties:**
 - NS masses and radii
 - rotational frequency, oscillation modes
 - cooling, moment of inertia etc
- **Gravitational waves**

Huth et al., Nature 606, 276 (2022)

see A. Raduta's talk for 29 astro constraints

A. F. Fantina

How can we get constraints?

Nuclear physics exp./ theory

Measure of nuclear properties:

- masses and radii of nuclei
- collective modes, polarizability
- neutron skins, HIC, flows etc ...
- ab-initio calculations

Astrophysical observations

- Measure of NS properties:
 - NS masses and radii
 - rotational frequency, oscillation modes
 - cooling, moment of inertia etc ...
- Gravitational waves

\rightarrow "low" density (better in nucleonic sector) \rightarrow "high" density

Pang et al., arXiv:2205.08513 (2022)

N.B.: rectangles only qualitative, → EoS dependence !

see A. Raduta's talk for 30 astro constraints

Constraints from nucl. phys.: theo

Fantina & Gulminelli, J.Phys. Conf. Ser. (submitted 2022); see also Oertel et al., Rev. Mod. Phys. 89, 015007 (2017)

Drischler et al., PPNP 121, 103888 (2021)

→ Not all popular models agree with ab-initio constraints!

→ Reasonable agreement of ab-initio (PNM) up to ~ saturation density → PNM calculations benchmark for phenomenological models

N.B.: for symmetric matter (ab-initio): (i) saturation point difficult to obtain ; (ii) larger uncertainties ; (iii) cluster formation at subsaturation

Gulminelli & Fantina, Nucl. Phys. News 31, 9 (2021)

J [MeV]

Constraints from nucl. phys.: exp (2)

							THE REPORTS AND ADDRESS	1897 - Barris B. B.			
Model	Ref.	E _{sat} (MeV)	$n_{\rm sat}~({\rm fm}^{-3})$	K _{sat} (MeV)	$E_{\rm sym}~({\rm MeV})$	Model	Ref.	$Q_{\rm sat}$	L _{sym}	K _{sym}	Κ _τ
El. scatt.	Wang-99 [55]		0.1607	235				(MeV)	(MeV)	(MeV)	(MeV)
				±15				$\overline{}$			\sim
LDM	Myers-66 [56]	-15.677	0.136 ^a	295	28.06	DF-Skyrme	Berdichevsky-88 [71]	30	0		
LDM	Royer-08 [57]	-15.5704	0.133ª		23.45	DF-Skyrme	Farine-97 [72]	-700			
LSD	Pomorski-03 [58]	-15.492	0.142 ^a		28.82			+500			
DM	Myers-77 [59]	-15.96	0.145 ^a	240	36.8	DE Classes	Alare 14 [21]	244	15	22	200
FRDM	Buchinger-01 [60]		0.157			DF-Skyrme	Alam-14 [31]	-344	00	-23	-322
		16.100	± 0.004	200				±46	± 14	±73	±34
INM	Satpathy-99 [61]	-16.108	0.1620	288		DF-Skyrme	McDonnell-15 [66]		40		
				± 20		-			+20		
DF-Skyrme	Tondeur-86 [62]		0.158				NI 2* [67]	124	122	106	600
DF-Skyrme	Klupfel-09 [63]	-15.91	0.1610	222	30.7	DF-NLKMF		124	125	100	-090
DE DEKA		±0.06	±0.0013	±8	±1.4	DF-NLKMF	PK [68]	-25	110	22	-630
DF-BSK2	Goriely-02 [64]	-15.79	0.1575	234	28.0	DF-DDRMF	DDME1,2 [69,70]	400	53	-94	-500
DF-D3K24,	Gonery-15 [65]	-10.045	+0.0004	243	50.0			± 80	± 3	±7	±7
DF-Skyrme	McDonnell_15 [66]	-15.75	± 0.0004	220	20	DE-DDRME	PK [68]	_119	79 5	_50	_491
DI -OKJINC		+0.25	+0.005	+20	+1	Correlation	Cantallas 00 [72]	117	70	50	425
DF-NLRMF	NL3* [67]	-16.3	0.15	258	38.7	Correlation	Centenes-09 [75]		/0		-425
DF-NLRMF	PK [68]	-16.27	0.148	283	37.7				± 40		± 175
DF-DDRMF	DDME1,2 [69,70]	-16.17	0.152	247	32.7	DF-RPA	Carbone-10 [74]		60		
		± 0.03	± 0.00	±3	±0.4				± 30		
DF-DDRMF	PK [68]	16.27	0.150	262	36.8	Correlation	Danielewicz-14 [75]		53		
Present		-15.8	0.155	230	32	conclation	Danielewicz-14 [75]		+20		
Estimation		± 0.3	± 0.005	± 20	±2	C 1 C			120		
Carl Hilder Transfer		P T Market with T Market	- All Contract Margaret Pro-	A STREET AND AND A STREET	Carl Miller T. Market	Correlation	Newton-14 [76]		70		
Marquero	on et al PRC 97	025805 (2018)							± 40		
Marguere		020000 (2010)				Correlation	Lattimer-14 [77]		53		
see also	Stone et al., PRC	89, 044316 (2	014)						+20		
						CMD	Second 07 [78]				500
						GMK	Sagawa-07 [76]				-500
NID											±50
N.B.: parameter estimation from various analysis						GMR	Patel-14 [79]				-550
											± 100
of experimental data						D		200	60	100	400
						Present		300	60	-100	-400
\rightarrow but through different models						Estimation		± 400	± 15	± 100	± 100

 \rightarrow not straightforward nor unambiguous extraction

Bayesian study

Explore many models ! → One can vary parameters (independently)
 Empirical parameters (<u>bulk</u>) X_{sat,sym} = E_{sat}, K_{sat}, Q_{sat}, E_{sym}, L_{sym}, K_{sym}, …
 prob(hp|data) ∝ prob(hp) × prob(data|hp)

$$p_{\text{post}}(\vec{X}) = \mathcal{N} p_{\text{prior}}(\vec{X}) e^{-\chi^2(\vec{X})/2} w_{\text{LD}}(\vec{X}) w_{\text{HD}}(\vec{X})$$

flat non-informative prior \rightarrow span large parameter space

nuclear masses (AME2016, AME2020) → surf. param. High-Density filters \rightarrow causality, stability, $M_{\text{NS,max}}$, $e_{\text{sym}} > 0$ (NICER, tidal from GW)

Low-Density filters → ab-initio (EFT)

(e.g. Drischler et al, PRC 93, 054316 (2016))

Crustal properties and correlations

A. F. Fantina

bulk

EoS: effect of LD/HD constraints

→ nucleonic hp compatible with observations
 → observations not yet enough constraining!

Fantina & Gulminelli, submitted, see also Dinh Thi et al., A&A 654, A114 (2021)

A. F. Fantina

How to discriminate models? (1) "Smoking gun" observation GW190426? $M_{\rm max}^{\rm obs} = 1.97 M_{\odot}$ $M_{\rm max}^{\rm obs} = 2.50 M_{\odot}$ 2500 2000 × ¹⁵⁰⁰ 1000 BSk24 SLy4 GW170817 (90%) 500PKDD TM1GW170817 (50%) (a) (b)

Gulminelli & Fantina, Nucl. Phys. News 31, 2 (2021); T. Carreau, PhD Thesis (2020)

2000

1000

 Λ_1

→ posterior (nucleonic matter) compatible with observations
 <u>but</u>: if M_{max} ~ 2.5 M_{sun} → challenge for nucleonic hypothesis ! → exotica !

 → meta-model (nucleonic) can be used as null hp

1000

2000

How to discriminate models ? (2)

- > More precise determination of observables (e.g. Λ)
- > More sensitive detectors \rightarrow new generation (e.g. ET)

How to discriminate models ? (3)

> More constraints from nuclear physics at high density (~ $2 n_{sat}$)

 \rightarrow e.g. HADES collaboration; elliptic flow: transport model vs data

Conclusions & open questions

- ♦ Nuclear inputs needed for neutron-star modelling
 → extrapolations of data & theoretical models needed
- ✤ Nuclear physics + astrophysics → constraints on EoS
- ✤ Uncertainties in nuclear data → impact astro observables

need of (microscopic) reliable theoretical model when no data
 need of experimental data to calibrate the models
 need of (more precise) astrophysical observations

➤ Lab. exper. mostly "low" density (~ saturation density), low T probed; matter in astro sites different from lab → extrapolation to astro conditions (high T and density, asymmetry, charge neutral) ?

➤ Astro simulations vs microphysics inputs → uncertainties in nuclear / astro, consistency of inputs and relative effects of microphysics inputs in astro modelling ? → systematic studies / bayesian analysis needed