Analysis of the direct 3α decay of the Hoyle state in ^{12}C

<u>David Werner</u>¹, Joe Roob, Peter Reiter¹, Konrad Arnswald¹, Maximilian Droste¹, Mădălina Enciu^{1,3}, Pavel Golubev², Rouven Hirsch¹, Hannah Kleis¹, Nikolas Königstein¹, Dirk Rudolph², Alessandro Salice¹, and Luis Sarmiento²

> ¹University of Cologne, Institute for Nuclear Physics, Cologne ²Lund University, Department of Physics, Lund, Sweden ³TU Darmstadt, Institute of Nuclear Physics, Darmstadt

17.03.2023

18th Russbach School on Nuclear Astrophysics

¹²C 3α decay

- ¹²C: 4th highest abundance
- Mass gap at A=5 & A=8
- 3 particle process improbable

¹²C 3α decay

- ¹²C: 4th highest abundance
- Mass gap at A=5 & A=8
- 3 particle process improbable

$^{12}C 3\alpha decay$

- ¹²C: 4th highest abundance
- Mass gap at A=5 & A=8
- 3 particle process improbable

$^{12}C 3\alpha decay$

- ¹²C: 4th highest abundance
- Mass gap at A=5 & A=8
- 3 particle process improbable

$^{12}C 3\alpha$ decay

- ¹²C: 4th highest abundance
- Mass gap at A=5 & A=8
- 3 particle process improbable

Complete setup

24 DSSSDS

- 8 in wall (forward)
- 16 in **2 rings (forward)**

Angular coverage:

Wall:	10° - 29°
Ring 1:	30° - 47°
Ring 2:	48° - 83°

Current setup in Cologne

- 18 DSSSDS
- 4 in wall (forward)
- 14 in 2 rings (forward)

Reason: not enough AIDA FEE modules in Cologne

24 detectors mounted

Angular coverage: Wall: 10° - 29° Ring 1: 30° - 47°

DSSSDS

24

8

16

Ring 2: 48° - 83°

Complete setup

in wall (forward)

in 2 rings (forward)

Current setup in Cologne

- 18 DSSSDS
- 4 in wall (forward)
- 14 in 2 rings (forward)

Reason: not enough AIDA FEE modules in Cologne

24 detectors mounted

Angular cover	age:
Wall:	10° - 29°
Ring 1:	30° - 47°
Ring 2:	48° - 83°

DSSSDS

24

8

16

Complete setup

in wall (forward)

in 2 rings (forward)

Current setup in Cologne

- 18 DSSSDS
- 4 in wall (forward)
- 14 in 2 rings (forward)

Reason: not enough AIDA FEE modules in Cologne

24 detectors mounted

Angular cover	age:
Wall:	10° - 29°
Ring 1:	30° - 47°
Ring 2:	48° - 83°

DSSSDS

24

8

16

Complete setup

in wall (forward)

in 2 rings (forward)

Current setup in Cologne

- 18 DSSSDS
- 4 in wall (forward)
- 14 in 2 rings (forward)

Reason: not enough AIDA FEE modules in Cologne

24 detectors mounted

Angular cover	age:
Wall:	10° - 29°
Ring 1:	30° - 47°
Ring 2:	48° - 83°

DSSSDS

24

8

16

Complete setup

in wall (forward)

in 2 rings (forward)

Current setup in Cologne

- 18 DSSSDS
- 4 in wall (forward)
- 14 in 2 rings (forward)

Reason: not enough AIDA FEE modules in Cologne

24 detectors mounted

	ADC signal	Discriminator signal			
position (detector + strip)					
time	ADC clock	time	FEE clock		
	500 kHz (2 μs)		100 MHz (10 ns)		
Energy		-			

_

Experiments

- 2 weeks, ${}^{12}C(\alpha, \alpha'){}^{12}C^* @ 27 \text{ MeV}$
- Beam current: 0.8 2 pnA

@ 10MV Cologne Tandem accelerator

- Target: 0.114 mg/cm² ^{nat}C
- > $4 \cdot 10^{10}$ particle events
- Calibration: α -source + Au(α, α')Au @ 8, 14, 20 MeV

Experiments

- 2 weeks, ${}^{12}C(\alpha, \alpha'){}^{12}C^* @ 27 \text{ MeV}$
- Beam current: 0.8 2 pnA
- Target: 0.114 mg/cm² ^{nat}C
- > $4 \cdot 10^{10}$ particle events
- Calibration: α -source + Au(α, α')Au @ 8, 14, 20 MeV

@ 10MV Cologne

Tandem accelerator

Brian Lindquist, Dalitz Plots SASS Talk

α

Hoyle state

3⁻ state

^{[1] 2008,} R. Álvarez-Rodríguez, *et al.* Phys. Rev. C **77**, 064305

3⁻ state

[1] 2008, R. Álvarez-Rodríguez, *et al.* Phys. Rev. C **77**, 064305

Outlook

- Improve Dalitz plots
 - Enhance energy calibration
 - Kinematic fitting (over-specified)

Outlook

- Improve Dalitz plots
 - Enhance energy calibration
 - Kinematic fitting (over-specified)

• Comparison to MC simulation

Outlook

- Improve Dalitz plots
 - Enhance energy calibration
 - Kinematic fitting (over-specified)

• Comparison to MC simulation

→ Extract branching ratios

2023, T. Biesenbach, private communication

Thank you for your attention and to the collaboration

University of Lund

Pavel Golubev Dirk Rudolph Luis Sarmiento

University of York

Mike Bentley

STFC Daresbury

Patrick Coleman-Smith Ian Lazarus Vic Pucknell University of Cologne David Werner Joe Roob Peter Reiter Timo Biesenbach Nikolas Königstein Alessandro Salice

*current affiliation: Institute of Nuclear Physics, Darmstadt

Backup

Detection & analysis pipeline

Calibration

