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Nucleosynthesis and massive stars

▶ Synthesis of elements:
lives and deaths of stars

▶ Massive stars:
succession of burning
phases, shell structure

▶ Stellar evolution driven
by nuclear reactions
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Carbon burning in massive stars

▶ 12C+12C: first heavy-ion fusion reaction to be considered for M > Mup ≃ 8M⊙
(0.8− 1.5) · 109 K

▶ Next natural reactions of astrophysical relevance: involving 16O
12C+16O: late burning phases of C/O, shell burning, intershells mixing, SN
16O+16O: the next binary fusion ((1.5− 2.7) · 109 K)

Reaction rates: rxy = NxNy< σν >xy (1 + δxy )−1
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https://doi.org/10.1086/305921
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The 12C+12C special case

Almqvist et al. PRL 4 (1960)

Nuclear structure / resonances

▶ correspond to compound states in 24Mg
(14-20MeV)

▶ large spacing, narrow width

▶ molecular/cluster states?

obstacle for extrapolation to stellar energies

Aguilera et al., PRC 73 (2006)
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https://doi.org/10.1103/PhysRevC.73.064601


Alpha-clustering in 24Mg

Theoretical predictions from first principles:

▶ Energy-density functionals (EDFs)
+ deformation Ebran et al., Nature 487 (2012)

▶ Antisymmetrized molecular dynamics (AMD)
IS monopole transition strengths from GS
Chiba and Kimura, PRC 91 (2015)

Experimental (indirect) signatures:

▶ Large α particle width

▶ Rotational bands, IS monopole

▶ At cluster-decay thresholds

Adsley et al., PRL 129 (2022): look for candidates 0+

cluster states with 24Mg(α, α0)24Mg reaction

from Ebran et al., PRC 90 (2014)

Ikeda et al., Prog. Theo. Phys. Suppl. E68 (1968)
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http://www.nature.com/doifinder/10.1038/nature11246
http://dx.doi.org/10.1103/PhysRevC.91.061302
https://doi.org/10.1103/PhysRevLett.129.102701
https://doi.org/10.1103/PhysRevC.90.054329
https://doi.org/10.1143/PTPS.E68.464


Neighboring alpha-conjugated systems

Jiang et al., PRC 75 (2007)

▶ Large spacing and narrow width of 24Mg compound
levels – might be smeared out in other systems
Jiang et al., PRL 110 (2013)

▶ Recent mild experimental hint for resonances in
12C+16O system? Fang et al., PRC 96 (2017)
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https://doi.org/10.1103/PhysRevC.90.054329
https://doi.org/10.1103/PhysRevLett.110.072701
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Fusion hindrance in medium-mass and light systems

Suppression of fusion in deep sub-barrier regime

Observed experimentally for a wide range of medium-mass systems.
Repulsive core in the potential which might be due to:

▶ Nuclear matter incompressibility
Mişicu and Esbensen, PRL 96 (2006)

▶ Pauli exclusion principle
Simenel et al., PRC 95 (2017)

Mişicu and Esbensen, PRL 96 (2006)
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http://dx.doi.org/10.1103/PhysRevC.75.015803
https://doi.org/10.1103/PhysRevC.95.031601
http://dx.doi.org/10.1103/PhysRevC.75.015803


Fusion hindrance in light systems?

Empirical trend of the S-factor maximum:

Montagnoli, Eur. Phys. J. A 53 (2017)

Reliability of the extrapolation for light systems?
e.g. Godbey et al., PRC 100 (2019): Pauli repulsion plays minor role for 12C + 12C
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Direct measurement principle

Mg+n

12C +12 C→ 23Na+ p [Q=2.24MeV]

→ 20Ne + α [Q=4.62MeV]

→ 23Mg + n [Q=-2.62MeV]

Direct measurements:

▶ charged particles (p/α)

▶ deexcitation gamma-rays

▶ charged-particles and γ in coincidence
→ STELLA experiment!

Selection of 1st excited state
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State of the art (2019)

Godbey et al., PRC 100 (2019)
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https://doi.org/10.1103/PhysRevC.100.024619


Direct measurement: challenges

At stellar temperatures: fusion via tunneling effect through the Coulomb Barrier

→ Extremely small cross sections!

Experimental challenges:

▶ Beam intensity (∼ 1-10 pµA)

▶ Stability (data taking weeks)

▶ Detection efficiency

▶ Background rejection

▶ Low statistics

Maxwell-Boltzmann

Tunneling through
Coulomb barrier

Gamov peak
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Measurements expressed in terms of astrophysical S-factor:
S = Eσ(E)exp(2πη)

11 / 19



Table of Contents

1 Carbon burning in massive stars
Nucleosynthesis and massive stars
The 12C special case
Fusion hindrance

2 Direct measurements
Measurement principle
State of the art
Experimental challenges

3 Fusion reactions studies with STELLA
Experimental setup
Data selection
Results for 12C + 12C
Future measurements

11 / 19



STELLA experimental setup

▶ Andromede facility, Orsay (France)
4 MV, ECR source, 10 pµA

▶ Particle detection: annular DSSSD
(Micron chips + IPHC conception)
✓ angular distribution meas.
✓ dΩ = 24% of 4π

▶ Gamma detection: 36 LaBr3(Ce) detectors
from UK FATIMA
✓ energy res.: 2.5% @ 1.4MeV
✓ sub ns-timing
✓ coverage: dΩ = 23% of 4π

DSSSD detectors
beam

rotating target

LaBr3(Ce)

45o monitors

12 / 19



STELLA experimental setup

▶ DAQ: synchronization of 1 GHz gamma DAQ and 125 MHz particle DAQ

▶ Selection CP/γ with timing gates ∼ 15 ns

▶ Intensities up to 2.5 pµA on thin target foils
(30-50µg.cm−2)
→ heat dissipation via rotating target system

▶ Post-beam thickness measurements

▶ Carbon morphology via Raman spectroscopy

▶ Measurement campaigns of several weeks → stability!

temperature drifs

after correction

M. Heine et al., NIM A 903 (2018)
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https://doi.org/10.1016/j.nima.2018.06.058


STELLA data selection and background suppression

α1

p1

▶ Charged particles: energy selection
+ p/α discrimination from timing

α1

alphasprotons

Heine et al., NIM A 903 (2018)

▶ Gamma-rays detection in LaBr3

Fruet et al., PRL 124 (2020)
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STELLA data selection and background suppression

ECM = 3.77 MeV

The power of coincidences with ns-timing:

▶ Background (from target) suppressed

▶ Random background subtraction
via delayed time windows

ECM = 2.16 MeV

At the lowest energies: ≲ 100 pb cross-sections!

▶ Extreme care with low statistics:
Feldman-Cousins formalism
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First measured S-factors from STELLA

Three regimes explored:

▶ Moderate sub-barrier energies: validation of experimental concept

▶ Deep sub-barrier energy: hindrance regime

▶ Gamov windows for ∼25M⊙

Norm.: thickness measurement, charge integrator, branchings p1/p and α1/α derived from Becker

G. Fruet et al., PRL 124 (2020)

→ provides reliable excitation functions over 8 orders of magnitude
down to 2.1 MeV (100 pb range!)

[ astrophysical impact: see T. Dumont talk ]
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https://doi.org/10.1103/PhysRevLett.124.192701


More results to come

2017 2019 2022

STELLA campaigns:

new detector

▶ 2017: exploration of three regimes
G. Fruet et al., PRL 124 (2020)

▶ 2019, 2022: finer investigations
+ angular distribution studies
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The next steps with STELLA: 12C+16O and 16O+16O

▶ Next natural reactions of astrophysical relevance:
12C+16O: e.g. late carbon burning phase
16O+16O: the next binary fusion

▶ Nuclear physics: fusion hindrance? Resonances?

▶ Scarce data in the relevant Gamov window...

core burning (2.2 GK) 

explosive burning (3.6 GK)

→ Measure with STELLA! Additional challenge: increasing complexity of exit channels:

▶ Charged particle detectors upgrade: improved angular coverage,
adapted thickness (higher energies), resolve complex final states

▶ Additional beam focusing element for an optimal beam spot size
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Conclusion and perspectives

▶ Fusion reaction cross-section crucial for stellar evolution of massive stars
intimately related to fundamental nuclear physics: resonances, hindrance?
→ Measurements essentials, microscopic understanding

▶ Direct measurements: challenging, complementary
STELLA: entering Gamov windows with coincidence technique

▶ 12C+12C: new rate + astrophysical consequences
Fruet et al., PRL 124 (2020) + Montpribat et al., A& A 660 (2022)

▶ Next steps: 12C+16O, 16O+16O. Increased complexity of final states, upgrades: charged
particles detectors & focalisation

Thank you for your attention!

19 / 19

https://doi.org/10.1103/PhysRevLett.124.192701
 https://doi.org/10.1051/0004-6361/202141858


BACKUP

1 / 5



Specificity of the 12C + 16O system

Much more channels and levels
available than for 12C+12C

→ increased complexity of the final
state identification

→ Accurate control of the energy
resolution indispensable
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Specificity of the 12C + 16O system

▶ Charged particles more energetic

▶ Discrimination power enhanced for large angles

▶ Open channels with two charged particles in the
final state

▶ p1 and α1 associated γ lines close to internal
contamination of LaBr3 detectors

12C + 12C 12C + 16O
23Na 27Al

p1 γ: 0.44MeV γ: 0.84MeV

p2 γ: 2.08MeV γ: 1.01MeV
20Ne 24Mg

α1 γ: 1.64MeV γ: 1.37MeV

α2 γ: 4.25MeV γ: 4.12MeV
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The CarbOx project

Upgrade 1: New light charged particle detector

NEW test bench @IPHC in Strasbourg:

▶ Independent reaction chamber → extensive
characterisation and testing in 2023

▶ DAQ improvements (easier shifter control,
temperature monitoring...)

▶ M1 internship: geometrical caracterisation
of the strips (< 10µm)

▶ DSSSD thicker than previous version

▶ Better covering of backward angles

▶ Additional sectorisation
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The CarbOx project

Upgrade 2: Focusing of the beam line

▶ Integration of a doublet of quadrupole just before STELLA

▶ Position optimization from beam optics simulation

▶ Goal: decrease beam spot diameter from 8mm to 4mm

- with focusing

- without focusing

energy (MeV)

co
un

ts

Geant4 simulation
S3B - Ring 23
Proton channel

Work ongoing: Geant4 simulations, impact of beam size/profile
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