

Inferring Properties of a Mysterious Shallow Heat Source in Accreting Neutron Star Crusts

Rahul Jain Russbach School on Nuclear Astrophysics 2023

This material is based upon work supported by the U.S. National Science Foundation under Award Numbers PHY-1913554, PHY-2209429 and used resources of the Facility for Rare Isotope Beams (FRIB), which is a DOE Office of Science User Facility, under Award Number DE-SC0000661.

Transient Systems

Accretion Outburst: Rapid Accretion Bright X-ray Emission

Transient Systems

Accretion Outburst: Rapid Accretion Bright X-ray Emission Quiescence: Little/No Accretion Faint X-ray Emission

Transient Systems

Accretion Outburst: Rapid Accretion Bright X-ray Emission Quiescence: Little/No Accretion Faint X-ray Emission

Globular Cluster Terzan 5 with Chandra X-ray Satellite

Quiescence Phase

Brown and Cumming 2009 ApJ 698 1020

Quiescence Phase

Brown and Cumming 2009 *ApJ* 698 1020 Wei Jia Ong, PhD Thesis, 2018

Extra Heating Requirement

A Turlione et al., A&A 577, A5 (2015)

Artificial heat source has to be accounted for to match models to observations for almost all systems.

Shallow Heat Source

A Turlione et al., A&A 577, A5 (2015)

Artificial heat source has to be accounted for to match models to observations for almost all systems.

Residual Accretion
Not the right characteristics

- Residual Accretion
 - Not the right characteristics
- Accretion-induced shear Viscous Heating (Piro et al. 2007) Accretion rate required not feasible

- Residual Accretion
 - Not the right characteristics

Accretion-induced shear - Viscous Heating (Piro et al. 2007) Accretion rate required not feasible

 Nuclear fusion of light n-rich elements (Horowitz et al. 2008) Not enough energy release

- Residual Accretion
 - Not the right characteristics

Accretion-induced shear - Viscous Heating (Piro et al. 2007) Accretion rate required not feasible

Nuclear fusion of light n-rich elements (Horowitz et al. 2008) Not enough energy release

• Pion heating (Fattoyev et al. 2018) Deeper heat deposition than inferred

- Residual Accretion
 - Not the right characteristics

Accretion-induced shear - Viscous Heating (Piro et al. 2007) Accretion rate required not feasible

- Nuclear fusion of light n-rich elements (Horowitz et al. 2008) Not enough energy release
- Pion heating (Fattoyev et al. 2018) Deeper heat deposition than inferred
- May other propositions like
 - Convective mixing (Horowitz et al. 2007)
 - Excitation of gravitational modes (Inogamov and Sunoyev, 2010)
 - Hyperbursts powered by O-Ne explosive fusion (Page et al. 2022)

Outburst Phase

KS 1731-260

Observed with Chandra X-ray telescope.

- $M = 1.6 M_{sun}$
- R = 10.42 km
- $A = 10^{17} \text{ g/cm}^2$
- T = 4383 days

Brown and Cumming 2009

Initial Composition

xnet

dStar

dStar

Cooling Curves

Low Impurity in Pasta

Low impurity nuclear pasta fits worse for all compositions. This is an evidence for high impurity of nuclear pasta.

• Detailed composition of the neutron star crust from realistic nucleosynthesis calculations can now be coupled to thermal evolution codes.

- Detailed composition of the neutron star crust from realistic nucleosynthesis calculations can now be coupled to thermal evolution codes.
- The inferred properties of a mysterious shallow heat source strongly depend on the previous nuclear burning stages.

- Detailed composition of the neutron star crust from realistic nucleosynthesis calculations can now be coupled to thermal evolution codes.
- The inferred properties of a mysterious shallow heat source strongly depend on the previous nuclear burning stages.
- The accreted material for KS 1731-260 is likely to be re-processed with superbursts.

- Detailed composition of the neutron star crust from realistic nucleosynthesis calculations can now be coupled to thermal evolution codes.
- The inferred properties of a mysterious shallow heat source strongly depend on the previous nuclear burning stages.
- The accreted material for KS 1731-260 is likely to be re-processed with superbursts.
- Cooling curve observations of quasi-persistent transients provide evidence for high impurity scattering in nuclear pasta.

Thank you!

Collaborators:	
----------------	--

xnet:

dStar:

EC/ β rates:

Fusion rates:

Initial Comp:

- Hendrik Schatz, Edward F Brown, Rita Lau William Raph Hix
 - Edward F Brown

Sanjib S Gupta, Peter Möller, Wei-Jia Ong

Mary Beard, Anatoli V Afansajev, L C Chamon, L R Gasques, Michael Wiescher

Laurens Keek

This material is based upon work supported by the U.S. National Science Foundation under Award Numbers PHY-1913554, PHY-2209429 and used resources of the Facility for Rare Isotope Beams (FRIB), which is a DOE Office of Science User Facility, under Award Number DE-SC0000661.

Thank you!

This material is based upon work supported by the U.S. National Science Foundation under Award Numbers PHY-1913554, PHY-2209429 and used resources of the Facility for Rare Isotope Beams (FRIB), which is a DOE Office of Science User Facility, under Award Number DE-SC0000661.