

Measurement of the cross section for the reaction $p + {}^{19}F \rightarrow {}^{16}O + {}^{4}He$ in the range of astrophysical interest

18th Russbach School on Nuclear Astrophysics

Xuedou Su

PART 01 Background

CONTENTS

PART 03 Data Analysis

PART 04 Summary

Background

He-burning shell of **Asymptotic Giant Branch** (AGB) stars is one of the major contributors to fluorine in galaxy.

The observed fluorine abundances cannot be explained by current AGB models.

It seems that the fluorine produced in the He-rich intershell can be carried to the surface by extra mixing effects.

In **population III stars**, the breakout possibility from the CNO cycles depends on the reaction rates of the ${}^{19}F(p,\gamma){}^{20}Ne$ and ${}^{19}F(p,\alpha){}^{16}O$.

The enhancement of this $(p,\gamma)/(p,\alpha)$ rate ratio by a factor of 8 or more could possibly solve the Ca production problem.

In order to investigate these problems, the major fluorine destruction channel ${}^{19}F(p,\alpha){}^{16}O$ should be studied.

¹⁹F (p,a₀)¹⁶O

Trojan Horse Method (THM) measurement in the energy region $0 < E_{cm} < 1$ MeV (La Cognata et al. 2011, La Cognata et al. 2015, Indelicato et al. 2017).

Direct measurement in the energy region $0.2 < E_{cm} < 1$ MeV (Lombardo et al. 2013, Lombardo et al. 2015).

¹⁹F(p,αγ)¹⁶O

Direct measurement in the energy region $72.4 < E_{cm} < 344$ keV (Zhang et al. 2021).

The ¹⁹F(p, α)¹⁶O reaction rate is the sum over the rate for the (p, α_0), (p, α_π) and (p, $\alpha\gamma$) channels, but the (p, α_π) channel has never been measured experimentally in the energy range of interest.

Experiment

Quasi-free breakup mechanism

- $A = x \oplus s$: Trojan Horse nucleus
 - x: Participant nucleus
 - s: Spectator nucleus

The cross section of two body reaction should be normalized using data from direct measurements.

Trojan Horse Method

Quasi-free breakup selection

$$a + A \longrightarrow C + c + s$$

 $a + x \longrightarrow C + c$

The quasi-free kinematical condition:

the relative momentum of s and x is zero

The beam energy is compensated by the $x \oplus s$ binding energy:

 $\mathbf{E}_{\mathbf{cm}} = \mathbf{E}_{\mathbf{aA}} - \mathbf{B}_{\mathbf{xs}}$

 $d^3\sigma$

 E_{aA} is the beam energy in the center-of-mass system. B_{xs} is the binding energy for the x–s system.

Plane Wave Impulse Approximation:

$$\frac{\mathrm{d}\sigma_{\mathrm{ax}}^{\mathrm{HOES}}}{\mathrm{d}\Omega} \propto \frac{\overline{\mathrm{d}E_{c}\mathrm{d}\Omega_{c}\mathrm{d}\Omega_{c}}}{\mathrm{KF}\left|\Phi(\vec{p}_{s})\right|^{2}}$$

Goal: ¹⁶O and α coincidence measurement

Beam: ¹⁹F Beam Energy: 55 MeV

Target: CD₂ Target Thickness: 0.1 mg/cm²

Detectors:

6 Position Sensitive Detectors (PSD)
2 Ionization Chambers (IC)
△ E-E Telescope (IC - PSD)
 (for Oxygen Identification)

Data Analysis

- Elastic scattering of ¹⁶O on ¹⁹⁷Au E = 30, 37, 45, 55 MeV;
- Elastic scattering of ¹⁶O on ¹²C E = 30, 37, 45, 55 MeV;
- Reaction of ¹⁹F on CD_2 E = 30 MeV;
- An α (²²⁸Th) radioactivity source.

3

Position and Energy Calibration

Position Calibration:

$$x = \frac{p - p_0}{e - e_0} \qquad \theta = \theta_0 + \arctan[c_1(x - x_0)]$$

Energy Calibration:

$$E_{MeV} = a + bE_{channel}$$
$$E_{MeV} = (a + bE_{ch})[1 + c_3(\theta - \theta_0)]$$

Data Analysis

3

Graphical selection of Z = 8 (Oxygen isotopes) events in $\triangle E$ -E spectrum.

Two-body reaction: $p + {}^{19}F \rightarrow \alpha_0 + {}^{16}O$ $p + {}^{19}F \rightarrow \alpha_{\pi}/\alpha_2 + {}^{16}O$ $p + {}^{19}F \rightarrow \alpha_3 + {}^{16}O$ $p + {}^{19}F \rightarrow \alpha_4 + {}^{16}O$

Three-body reaction:
$$p + {}^{19}F \rightarrow \alpha_0 + {}^{16}O$$

 $p + {}^{19}F \rightarrow \alpha_{\pi}/\alpha_2/\alpha_3/\alpha_4 + {}^{16}O$

Reaction Channel Selection

Data Analysis

Simulation Experiment

E_{α-160} (MeV)

-150

3

E_a (MeV)

Reaction Channel Selection

Comparison with simulation

Selection in E_{α} - E¹⁶O and E_{α} -¹⁶O- P_s

 $\overline{\mathbf{D}}$

Select the three-body reaction channel

Reduce the background

 $E_{16_O}(MeV)$

(1) the line of (p, α_3) and (p, α_4) channels

 P_s (MeV)

50

100

150

(2) the line of (p, α_{π}) and (p, α_{2}) channels

- The ¹⁹F(p, α)¹⁶O reaction was measured by the Trojan Horse Method based on the quasi-free breakup process of d(¹⁹F, α ¹⁶O)n.
- The position and energy calibration of PSDs were performed by means of the α radioactivity source and elastic scattering of ¹⁶O on the ¹²C and ¹⁹⁷Au target.
- The oxygen isotope was identified in $\triangle E$ -E spectrum.
- The kinematic locus of three-body reaction $d({}^{19}F, \alpha {}^{16}O)n$ was identified and the $(p, \alpha_{\pi}/\alpha_2)$ and $(p, \alpha_3/\alpha_4)$ channels were separated by y = (1/m)x - Q plot.
- Resonant states were observed in the relative energy spectrum and will be subject of detailed investigation in the coming months.

ASFIN Collaboration

 @ <u>Catania/LNS</u>: A. Bonasera, S. Cherubini, G. D'Agata, A. Di Pietro, P. Figuera, G.L. Guardo, M. Gulino, M. La Cognata, L. Lamia, D. Lattuada, A.A. Oliva, G.G. Rapisarda, R.G. Pizzone, S. Romano, D. Santonocito, M.L. Sergi, R. Spartà, A. Tumino
 @ <u>Padova</u> M. Mazzocco, F. Soramel
 @ <u>Perugia</u> S. Palmerini, M. Busso, M. Limongi, A. Chieffi, M.C. Nucci
 @ Napoli M. La Commara

International Collaborations

- Notre Dame University USA: M. Wiescher, M. Couder
- Cyclotron Institute, Texas A&M, USA: R. Tribble, V. Goldberg
- Texas A&M Commerce USA: C. Bertulani
- Florida State University USA: I. Wiedenhofer
- C.N.S. Riken, Wako, Japan: S. Kubono, H. Yamaguchi, S. Hayakawa
- University of Taskent: B. Irgaziev, R. Yarmukhanmedov
- CIAE, Beijing, China: S. Zhou, C. Li, Q. Wen
- Nuclear Physics Institute, ASCR, Rez, Czech Rep.: V. Kroha, V. Burjan, J. Mrazek
- Nipne IFIN Bucharest: L. Trache
- ELI-NP Bucharest: C. Matei, D. Balabanski
- Atomki, Debrecen, Hungary: G. Kiss
- CSNSM, Orsay, France : A. Coc , F. Hammache, N. De Sereville
- University of Catalunya: J. Jose
- Rudjer Boskovic Institute Zagreb Croatia: N. Soic, M. Milin
- University of Pisa: S. Degl'Innoccenti, P. Prada Moroni

Thanks for your attention!