MODELLING THE CHEMICAL EVOLUTION OF THE MILKY WAY WITH OMEGA+

Viola Hegedűs (ELTE Gothard Astrophysical Observatory, Szombathely, Hungary) Szabolcs Mészáros (ELTE Gothard Astrophysical Observatory, Szombathely, Hungary) Paula Jofré (Universidad Diego Portales, Santiago, Chile) Maria Lugaro, Marco Pignatari, Blanka Világos (CSFK Konkoly Observatory, Hungary)

I. RECENT OBSERVATIONS

SDSS APOGEE & MWM GALAH Gaia-ESO

high resolution ($R > 10\,000$) sky surveys exploring the chemical map of our Galaxy to date

a comparison between the three latest data releases of these surveys to investigate the accuracy, precision of derived parameters by placing the abundances on the absolute scale

main parameters: v_{rad}, T_{eff}, log g, [M/H], v_{micro}

+ commonly derived chemical abundances

Hegedűs et al. 2023, A&A, 670, A107

High Resolution Spectroscopic Sky Surveys

	APOGEE	GALAH	GES
	DR17	DR3	DR5
Date of data release	December 2021	November 2020	May 2017
Number of stars	733,901	588,571	114,324
Telescope	Sloan Foundation at APO, 2.5 m	Anglo-Australian Telescope at	ESO Telescopes at the La Silla
	NMSU at APO, 1 m	Siding Spring Observatory, 3.9 m	Paranal Observatory
	du Pont telescope at LCO, 2.5 m		
Wavelength range	15 140–16 940 Å	4 optical bands:	multiple ranges
		4713–4903 Å, 5648–5873 Å	from 4033 Å to 9001 Å
		6478–6737 Å, 7585–7887 Å	
Resolution	$\sim 22\ 500$	$\sim 28\ 000$	$\sim 16000 - 26000, 47000$
Calibration	calibrated T_{eff} , log g, [M/H], [α /M],	calibrated abundance parameters	Gaia benchmark stars and calibrat-
	abundance parameters	•	ing clusters
Method of deriving pa-	ASPCAP (parameters and abun-	Spectrum synthesis (SME and The	equivalent widths, comparisons of
rameters	dances)	Cannon)	observed spectra and a grid of tem-
			plates (strategy: WGs)
Model atmospheres	Kurucz model (Cannon models),	MARCS grid (plane parallel mod-	MARCS grid
_	all-MARCS grid ($T_{\rm eff} < 8000 \text{ K}$)	els for $\log g > 4$, spherical models	_
		for $\log g < 4$)	
1D/3D	spherical (Turbospectrum) or plane	1D spherical	1D spherical
	parallel (Synspec)		
LTE/NLTE	LTE/NLTE	LTE/NLTE	
Spectral synthesis code	Turbospectrum (for the main spec-	Spectroscopy Made Easy (SME)	e.g. Turbospectrum, SME, MOOG,
	tral grids), Synspec		COGs
1D/3D	Plane parallel and spherical	1D spherical	
LTE/NLTE	LTE/NLTE	LTE/NLTE	LTE
Solar reference table	Grevesse et al. (2007)	Buder et al. (2021)	Grevesse & Sauval (1998)

Overlapping Statistics

	APOGEE-GALAH	APOGEE-GES	GALAH-GES
No. common	37,770 (15,537)	2,502 (804)	1,510 (441)
stars ^a			
Common	$T_{\text{eff}}, \log g, v_{\text{rad}}, [\text{Fe/H}], [\alpha/\text{Fe}],$	$T_{\rm eff}$, log g, $v_{\rm rad}$, [Fe/H], $v_{\rm micro}$	$T_{\text{eff}}, \log g, v_{\text{rad}}, \text{[Fe/H]}, v_{\text{micro}}$
parameters	V _{micro}		

The Commonly Observed Stars

- The common sample covers mostly thick disk, halo stars and Kepler K2 fields.
- The thin disk is not well sampled, but metal-rich stars are still abundant in the APOGEE-GALAH common sample.

HRD of Commonly Observed Stars

- Top: each survey's latest DR
 - Bottom: common sample
 - investigate MS and RGB separately
 - APOGEE-GALAH:
- HRD is well sampled in a large T_{eff} -log g range.
- Average differences and their slope as function of parameters are discussed.

Overall Differences of Main Parameters

- We compare the strength of correlations with the average uncertainties in order to differentiate between the correlated errors and "true" correlations.
 - potential large discrepancies:

 ΔT_{eff} with metallicity and log g (dwarfs only)

- v_{micro}-s are determined in a fundamentally different way
- but overall the differences lie within the reported uncertainties

APOGEE-GALAH dwarfs

APOGEE-GALAH giants

Fig. 5. The strength of the correlations between parameter pairs are indicated by colors. Light blue cells represent no significant correlations (< 0.8σ), while the dark blue ones mark weak correlations ($0.8\sigma - 1.5\sigma$). Black cells are not relevant due to the absence of reported uncertainties of v_{micro} or because connecting same quantities (e.g., ΔT_{eff} with ΔT_{eff}). The estimated strength of correlations are based on the comparison of the correlation slopes with the average of the reported individual uncertainties of stellar parameters and RVs. The stars have been separated into dwarfs (left column) and giants (right column).

	APOGEE-GALAH		
No. common stars ^(a)	37 770 (15 537)		
Common	$T_{\rm eff}$, $\log g$, $v_{\rm rad}$, [Fe/H],	
parameters	$[\alpha/\text{Fe}], v_{\text{micro}}$		
Common ele-	C, U, Na, Mg, Al, Si, K, Ca Ti Ti II V Cr Mp Co		
ments	Ni, Cu	r, wiii, Co,	
S/N cut (b)	SNR > 100	8-	
S/IN Cut V	snr c3 iraf>3	a 0	
Other quality	vbroad < 15 & flag sp ==		
cuts ^(b)	$0 \& flag_fe_h == 0 \&$		
	VSCATTER<1 & VSINI<15		
	& VERR<1, flags		
	$\mu \pm \sigma$	$\mu \pm \sigma$	
	dwarfs	giants	
$\Delta T_{\rm eff}({\rm K})$	43.6 ± 137.3	-54.3 ± 91.7	
overall	$-5.4 \pm$	126.6	
$\Delta \log g(\text{dex})$	0.01 ± 0.13	0.09 ± 0.22	
overall	$0.05 \pm$	0.19 ± 0.121	
Δ[M/Π] ···	0.000 ± 0.082	0.039 ± 0.121	
$\Delta [\alpha/H](dex)$	-0.014 ± 0.082	0.005 ± 0.107	
overall	overall -0.005 ± 0.096		
$\Delta v_{\rm micro}({\rm km s^{-1}})$	-0.34 ± 0.42	-0.03 ± 0.36	
overall	overall -0.18 ± 0.43		
$\Delta v_{\rm rad} ({\rm km s^{-1}})$	-0.01 ± 4.10	-0.04 ± 2.81	
overall	$-0.02 \pm$	3.51	

Overall Differences of Abundances

 $\Delta [\alpha/Fe]$

 Δ [C/Fe]

 Δ [O/Fe]

∆[Na/Fe]

 $\Delta[Mg/Fe]$

 $\Delta[AI/Fe]$

Δ[Si/Fe]

 $\Delta[K/Fe]$

 Δ [Ca/Fe]

Δ[Ti/Fe]

Δ[Till/Fe]

 Δ [V/Fe]

 Δ [Cr/Fe]

 $\Delta[Mn/Fe]$

 Δ [Co/Fe]

∆[Ni/Fe]

 $\Delta[\alpha/H]$

 Δ [C/H]

 $\Delta[O/H]$

∆[Na/H]

 Δ [Mg/H]

 $\Delta[AI/H]$

 Δ [Si/H]

 $\Delta[K/H]$

 Δ [Ca/H]

 Δ [Ti/H]

 Δ [Till/H]

 Δ [V/H]

 Δ [Cr/H]

 Δ [Mn/H]

 Δ [Co/H]

 Δ [Ni/H]

- average differences for all cases and the strength of the correlation with main parameters and the differences of main parameters between APOGEE and GALAH
 - example plot:

 Δ [X/H] vs. Δ T_{eff} for giants

- strength of correlations in abundance pairs (linear fits)
- only few significant correlations are found between APOGEE and GALAH (Δ[Al/H] vs. Δlog *g* dwarfs, Δ[α/H] vs. Δlog *g* giants, Δ[Ti/H] vs. ΔT_{eff}, Δ[M/H], Δlog *g* giants)

- average differences of [X/H] and A(X) in the whole sample for each element
- darker area indicates ± 0.1 dex
- correcting for the different Sun zeropoints slightly improves the agreement

Conclusions

- a remarkable job at replicating atmospheric and abundance parameters
- differences of the main APs agree within uncertainties, except ΔT_{eff} (M/H, log g) for dwarfs only
- significant correlation was found in $\Delta v_{micro} (v_{micro})$:

APOGEE fits the spectrum, while GALAH calculates it from T_{eff}

significant correlations are found between APOGEE and GALAH for the following elements: Δ[Al/H] vs. Δlog *g* dwarfs; Δ[α/H] vs. Δlog *g* giants; Δ[Ti/H] vs. ΔT_{eff}, Δ[M/H], Δlog *g* giants

Effect on the MW chemical maps

• The GALAH and APOGEE median trends for Si and Ca are similar

sharper separations \rightarrow both have a non-negligible contribution from SNIa

• Oxygen has a much stronger metallicity dependence in GALAH, while the APOGEE trends are nearly flat

The disagreements on the slopes of the [M/H] or [Mg/H] dependences could arise from the difficulty of deriving O abundances from both optical (GALAH) and near-IR (APOGEE) spectra.

APOGEE data agrees better with theoretical expectations, as the O and Mg enrichment have slight dependence on metallicity.

Fig. 12. Reproduction of Figure 3, Griffith et al. (2019), based on the most current versions of the databases. GALAH DR3 α element median abundances of the high-Ia supernovae (empty blue circles) and low-Ia supernovae (empty red circles) populations. Data are binned by 0.1 dex in [Mg/H]. APOGEE DR17 median abundances are also included (squares).

I. CHEMICAL EVOLUTION OF THE MW

• SDSS APOGEE & MWM private data (Kollmeier et al. 2017)

- OMEGA (Côté et al. 2017)
- OMEGA+ (Côté et al. 2018)

Building up the Galactic formation

• Main equation:

 $M_{\rm gas}(t+\Delta t) = M_{\rm gas}(t) + \left[\dot{M}_{\rm in}(t) + \dot{M}_{\rm ej}(t) - \dot{M}_{\star}(t) - \dot{M}_{\rm out}(t)\right]\Delta t$

- Parameters in MW models:
 - star formation history, mass-loading (η) , surface mass densities $(\sigma_{1,2})$, IMF-type, time of each infall $(t_{max1,2})$, inflow-rate, SNIa and SNII rates as function of Galactic age
 - stellar yields for individual elements \rightarrow tables
- Recent results on two-infall formation models:

[Fe/H]

-0.25

-0.50

-0.75

_____ log(N./N_{tot})

-1.25

-1.50

-1.75

• Meeting observations:

Outlook

Stellar migration?Fix certain parametersFit on the latest results of MWM

Vary the yield tables

Fit models for the alpha and also for the odd-Z elements

Effective Temperature

- T_{eff} differences are shown in the top row as a function of T_{eff}, [M/H], log g, v_{micro}
 - Overall statistics (K):
- APO-GALAH: -5.4 ± 126.6 APO-GES: -35.0 ± 79.0
- GALAH-GES: 15.7 ± 125.2
- overall differences: within the error budget
- a discrepancy between giants and dwarfs as a function of T_{eff} (top left panel)

Surface Gravity

- log g differences are shown in the second row from the top
 - Overall statistics:
- APO-GALAH: 0.05 ± 0.19
- APO-GES: 0.07 ± 0.17
- GALAH-GES: -0.10 ± 0.19
- Note that APOGEE consistently measures higher surface gravities than asteroseismic $\log g$ -s

Metallicity

- second row from the bottom
 - Overall statistics:
- APO-GALAH: 0.02 ± 0.10 APO-GES: -0.01 ± 0.07 GALAH-GES: -0.16 ± 0.23
 - Overall differences are within the error budget, but note the discrepancy as a function of low T_{eff}-s (APOGEE-GALAH)

Microturbulent Velocity

- bottom row
- Overall statistics:

APO-GALAH: -0.18 ± 0.43 APO-GES: 0.0 ± 0.34 GALAH-GES: -0.15 ± 0.20

• Significant correlation found as a function of v_{micro} : APOGEE fits the spectrum, while GALAH calculates it from T_{eff}

