Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (Bucharest, Romania)

Bayesian Inference of the Dense Matter Equation of State built upon Covariant Density Functionals

M. V. Beznogov, A. Raduta

18th Russbach School on Nuclear Astrophysics, 15th March, 2023

Bayesian inference of CDF EOSs

Introduction

Main part

- Simplified Density Dependent CDF Model
- Equation of State of Nuclear Matter
- Constraints
- Markov Chain Monte-Carlo Setup
- Results

Conclusions

03 (20)

After Anthea's and Adriana's talks you have some grasp of neutron stars and how studying them improves our understanding of dense matter, its properties and equation of state.

The purpose of our work is to investigate how different combinations of nuclear matter and neutron stars constraints affect the properties of dense matter.

Model

04 (20)

We employ simplified density dependent (DD) Covariant Density Functionals (CDF) model proposed by Malik et al. [ApJ **930**, 17 (2022)].

Interactions are mediated by mesonic fields: σ , ω , ρ .

- σ and ω : isoscalar channel (attraction and repulsion);
- ρ : isovector channel (difference between protons and neutrons).

The model has six parameters:

- $\Gamma_{\sigma,0}, \Gamma_{\omega,0}, \Gamma_{\rho,0}$ determine properties at saturation density (n_{sat}) ;
- $a_{\sigma}, a_{\omega}, a_{\rho}$ determine the density dependent behavior.

Equation of State of Nuclear Matter 05 (20)

Energy per nucleon is expressed in terms of deviations from saturation density (n_{sat}) and isospin symmetry $(\delta = 0)$:

$$\frac{E(n_{\rm B},\delta)}{A} = E_0(n_{\rm B},0) + \delta^2 E_{\rm sym}(n_{\rm B},0), n_{\rm B} = n_{\rm n} + n_{\rm p}, \delta = \frac{n_{\rm n} - n_{\rm p}}{n_{\rm B}}$$

with

$$E_{0}(n_{\rm B},0) = \sum_{i=0,1,2,\dots} \frac{1}{i!} X_{\rm sat}^{(i)} \mathcal{X}^{i}$$
$$E_{\rm sym}(n_{\rm B},0) = \sum_{j=0,1,2,\dots} \frac{1}{j!} X_{\rm sym}^{(j)} \mathcal{X}^{j}, \quad \mathcal{X} = \frac{n_{\rm B} - n_{\rm sat}}{3n_{\rm sat}}$$

Note that:

- $X_{\text{sat}}^{(i)}$ depend on $\Gamma_{\sigma,0}, \Gamma_{\omega,0}, a_{\sigma}, a_{\omega}$
- $X_{\text{sym}}^{(i)}$ mostly depend on $\Gamma_{\rho,0}$ and a_{ρ}

Constraints

We have considered the following NM and astrophysics constraints *(targets)*, which we treated as **independent**:

Quantity	Units	Value (d_i)	SD (σ_i)	Comments
n _{sat}	fm ⁻³	0.153	0.005	SNM
E _{sat}	MeV	-16.1	0.2	SNM
K _{sat}	MeV	230	40	SNM
J _{sym}	MeV	32.5	1.8	SNM <-> PNM
$m_{ m eff}$	$m_{ m N}$	0.55	0.05	SNM at n_{sat}
$(E/A)_1$	MeV	9.50	0.52	PNM at 0.08 fm^{-3}
$(E/A)_2$	MeV	12.68	1.20	PNM at 0.12 fm^{-3}
$(E/A)_2$	MeV	16.31	2.13	PNM at 0.16 fm^{-3}
<i>P</i> ₁	MeV/fm ³	0.509	0.093	PNM at 0.08 fm^{-3}
<i>P</i> ₂	MeV/fm ³	1.238	0.302	PNM at 0.12 fm^{-3}
<i>P</i> ₃	MeV/fm ³	2.482	0.687	PNM at 0.16 fm^{-3}
$M_{ m G}^*$	M_{\odot}	> 2.0 or > 2.2	N/A	NS

With the abovementioned assumptions and given the vector of model parameters $\boldsymbol{\Theta}$ and vector of constraints (*targets*) \mathbf{D} , the likelihood function for the "run" q can be written as

$$\mathcal{L}_{q}\left(\boldsymbol{\Theta} \mid \mathbf{D}\right) = \prod_{i=1}^{N_{q}} \frac{1}{\sqrt{2\pi\sigma_{i}}} \exp\left[-\frac{1}{2}\left(\frac{d_{i}-\xi_{i}(\boldsymbol{\Theta})}{\sigma_{i}}\right)^{2}\right]$$

where $\xi_i(\Theta)$ is the value of quantity *i* computed from the model defined by parameters Θ .

Neutron stars maximum mass constraint is introduced as a "hard wall". Any models Θ that result in maximum NS mass less than the threshold value are immediately rejected by setting their likelihood to extremely low value ~exp(-10⁶)

MCMC

08 (20)

For posterior estimation normalization factors are not relevant. Most of Bayesian analysis software work with the logarithm of the likelihood that can be recast into the following form:

$$\log \mathcal{L}_q \propto -\frac{1}{2} \sum_{i=1}^{N_q} \left(\frac{d_i - \xi_i(\mathbf{\Theta})}{\sigma_i} \right)^2 = -\chi_q^2$$

MCMC

09 (20)

The last crucial ingredient of any Bayesian study is the prior. We have chosen uniform *(uninformative)* prior in the following ranges:

Quantity	Units	Min.	Max.
$\Gamma_{\sigma,0}$	MeV	7.5	13.5
$\Gamma_{\omega,0}$	MeV	8.5	14.5
$\Gamma_{ ho,0}$	MeV	2.5	8.0
a_{σ}	_	0.0	0.30
a_{ω}	—	0.0	0.30
$a_{ ho}$	_	0.0	1.30

MCMC

10 (20)

We have employed Affine-Invariant Markov Chain Monte-Carlo method as implemented in the *emcee* package as our main tool. We have performed extensive tests of convergence by means of autocorrelation length analysis, "bootstrap" checks of the posterior and by comparison with the results calculated independently via Nested Sampling as implemented in the *dynesty* package.

11 (20)

Corner plot of 1D and 2D marginalized posterior distributions of some of the *output* parameters of our baseline model:

12 (20)

Corner plot of 1D and 2D marginalized posterior distributions of the NS-related *output* parameters of our baseline model:

1D marginalized posterior distributions of the *output* parameters of different considered models:

13 (20)

14 (20)

	$\Gamma_{\sigma,0}$	$\Gamma_{\omega,0}$	$\Gamma_{ ho,0}$	a_{σ}	a_{ω}	$a_{ ho}$	$n_{\rm sat}$	$E_{\rm sat}$	$K_{\rm sat}$	$Q_{\rm sat}$	$Z_{\rm sat}$	$J_{\rm sym}$	$L_{\rm sym}$	$K_{\rm sym}$	$Q_{\rm sym}$	$Z_{\rm sym}$	$m_{\rm eff}$	\widetilde{E}_1	\widetilde{E}_2	\widetilde{E}_3	P_1	P_2	P_3	$M_{\rm G}^*$	$M_{\rm B}^*$	$n_{\rm c}^*$	$ ho_{ m c}^*$	$P_{\rm c}^*$	$R_{1.4}$	$\Lambda_{1.4}$	$R_{2.0}$
$\Gamma_{\sigma,0}$	1.00	0.99	-0.41	0.36	0.58	0.21	-0.13	0.00	0.55	0.48	-0.76	-0.03	0.26	0.56	-0.33	-0.25	-0.85	0.03	-0.03	0.12	-0.25	0.07	0.40	0.06	0.01	-0.35	-0.43	-0.91	0.52	0.50	0.32
$\Gamma_{\omega,0}$	0.99	1.00	-0.42	0.36	0.58	0.21	-0.12	0.01	0.56	0.49	-0.77	-0.02	0.26	0.56	-0.34	-0.25	-0.86	0.03	-0.03	0.12	-0.25	0.07	0.40	0.06	0.01	-0.34	-0.43	-0.91	0.52	0.50	0.32
$\Gamma_{ ho,0}$	-0.41	-0.42	1.00	-0.24	-0.37	-0.39	-0.22	-0.10	-0.41	-0.35	0.53	0.24	-0.05	-0.63	0.14	0.37	0.50	0.12	0.42	0.35	0.54	0.27	0.01	0.03	0.05	0.15	0.20	0.42	-0.18	-0.21	-0.11
a_{σ}	-0.36	0.36	-0.24	1.00	0.77	0.21	-0.08	-0.02	-0.03	-0.12	-0.30	-0.05	-0.01	0.08	-0.12	-0.13	-0.35	0.01	-0.00	0.01	-0.04	0.01	0.04	-0.57	-0.61	0.28	0.19	-0.43	-0.09	-0.12	-0.31
a_{ω}	0.58	0.58	-0.37	0.77	1.00	0.23	-0.04	0.00	0.20	0.11	-0.53	-0.02	0.12	0.27	-0.23	-0.19	-0.58	0.02	-0.02	0.05	-0.12	0.03	0.17	-0.36	-0.41	0.08	-0.01	-0.64	0.11	0.09	-0.10
$a_{ ho}$	-0.21	0.21	-0.39	0.21	0.23	1.00	-0.10	-0.02	0.08	0.05	-0.17	-0.44	-0.48	0.38	0.40	-0.83	-0.19	0.26	-0.21	-0.44	-0.69	-0.69	-0.36	-0.06	-0.07	-0.04	-0.08	-0.25	-0.01	0.05	0.00
$n_{\rm sat}$	-0.13	-0.12	-0.22	-0.08	-0.04	-0.10	1.00	0.02	0.11	0.10	-0.09	0.30	0.20	-0.00	-0.11	0.07	-0.02	-0.03	-0.04	-0.08	0.01	-0.04	-0.13	-0.08	-0.06	0.15	0.16	0.16	-0.20	-0.19	-0.15
$E_{\rm sat}$	-0.00	0.01	-0.10	-0.02	0.00	-0.02	0.02	1.00	-0.02	0.05	-0.05	-0.12	0.03	0.07	-0.08	0.05	-0.01	0.01	0.02	0.03	0.00	0.02	0.02	0.00	0.00	-0.00	-0.00	0.00	0.01	0.01	0.01
$K_{\rm sat}$	0.55	0.56	-0.41	-0.03	0.20	0.08	0.11	-0.02	1.00	0.87	-0.66	0.11	0.40	0.61	-0.37	-0.18	-0.61	0.02	-0.05	0.11	-0.27	0.07	0.41	0.38	0.34	-0.60	-0.65	-0.48	0.64	0.66	0.57
$Q_{\rm sat}$	-0.48	0.49	-0.35	-0.12	0.11	0.05	0.10	0.05	0.87	1.00	-0.58	0.09	0.38	0.59	-0.34	-0.16	-0.53	0.02	-0.05	0.11	-0.26	0.07	0.40	0.47	0.43	-0.68	-0.71	-0.41	0.68	0.70	0.65
$Z_{\rm sat}$	-0.76	-0.77	0.53	-0.30	-0.53	-0.17	-0.09	-0.05	-0.66	-0.58	1.00	-0.07	-0.35	-0.58	0.40	0.22	0.90	-0.02	0.05	-0.10	0.25	-0.06	-0.36	-0.06	-0.02	0.32	0.40	0.72	-0.45	-0.45	-0.29
$J_{\rm sym}$	-0.03	-0.02	0.24	-0.05	-0.02	-0.44	0.30	-0.12	0.11	0.09	-0.07	1.00	0.45	-0.25	-0.28	0.34	-0.04	0.16	0.52	0.58	0.47	0.43	0.26	-0.02	-0.02	0.04	0.05	0.07	0.01	-0.04	-0.03
$L_{\rm sym}$	-0.26	0.26	-0.05	-0.01	0.12	-0.48	0.20	0.03	0.40	0.38	-0.35	0.45	1.00	0.09	-0.78	0.39	-0.32	-0.21	0.13	0.44	0.29	0.61	0.66	0.13	0.11	-0.22	-0.23	-0.20	0.35	0.28	0.23
$K_{\rm sym}$	0.56	0.56	-0.63	0.08	0.27	0.38	-0.00	0.07	0.61	0.59	-0.58	-0.25	0.09	1.00	-0.15	-0.43	-0.57	-0.03	-0.31	-0.20	-0.59	-0.21	0.16	0.26	0.23	-0.48	-0.54	-0.53	0.49	0.54	0.44
$Q_{ m sym}$	-0.33	-0.34	0.14	-0.12	-0.23	0.40	-0.11	-0.08	-0.37	-0.34	0.40	-0.28	-0.78	-0.15	1.00	-0.36	0.38	0.33	0.01	-0.33	-0.23	-0.57	-0.68	-0.04	-0.01	0.18	0.21	0.29	-0.35	-0.28	-0.19
$Z_{\rm sym}$	-0.25	-0.25	0.37	-0.13	-0.19	-0.83	0.07	0.05	-0.18	-0.16	0.22	0.34	0.39	-0.43	-0.36	1.00	0.24	-0.35	0.13	0.35	0.70	0.64	0.29	-0.05	-0.04	0.15	0.19	0.28	-0.08	-0.15	-0.12
$m_{\rm eff}$	-0.85	-0.86	0.50	-0.35	-0.58	-0.19	-0.02	-0.01	-0.61	-0.53	0.90	-0.04	-0.32	-0.57	0.38	0.24	1.00	-0.03	0.04	-0.10	0.25	-0.07	-0.37	-0.04	0.01	0.31	0.39	0.81	-0.46	-0.45	-0.28
\widetilde{E}_1	-0.03	0.03	0.12	0.01	0.02	0.26	-0.03	0.01	0.02	0.02	-0.02	0.16	-0.21	-0.03	0.33	-0.35	-0.03	1.00	0.50	0.18	-0.09	-0.22	-0.18	0.02	0.02	-0.03	-0.04	-0.03	-0.03	0.00	0.01
\widetilde{E}_2	-0.03	-0.03	0.42	-0.00	-0.02	-0.21	-0.04	0.02	-0.05	-0.05	0.05	0.52	0.13	-0.31	0.01	0.13	0.04	0.50	1.00	0.63	0.39	0.26	0.13	-0.03	-0.03	0.04	0.05	0.05	-0.02	-0.04	-0.04
\widetilde{E}_3	-0.12	0.12	0.35	0.01	0.05	-0.44	-0.08	0.03	0.11	0.11	-0.10	0.58	0.44	-0.20	-0.33	0.35	-0.10	0.18	0.63	1.00	0.52	0.60	0.48	0.05	0.03	-0.09	-0.09	-0.08	0.20	0.14	0.11
P_1	-0.25	-0.25	0.54	-0.04	-0.12	-0.69	0.01	0.00	-0.27	-0.26	0.25	0.47	0.29	-0.59	-0.23	0.70	0.25	-0.09	0.39	0.52	1.00	0.61	0.23	-0.14	-0.13	0.24	0.27	0.26	-0.16	-0.23	-0.20
P_2	-0.07	0.07	0.27	0.01	0.03	-0.69	-0.04	0.02	0.07	0.07	-0.06	0.43	0.61	-0.21	-0.57	0.64	-0.07	-0.22	0.26	0.60	0.61	1.00	0.61	0.02	0.01	-0.05	-0.04	-0.04	0.19	0.11	0.08
P_3	-0.40	0.40	0.01	0.04	0.17	-0.36	-0.13	0.02	0.41	0.40	-0.36	0.26	0.66	0.16	-0.68	0.29	-0.37	-0.18	0.13	0.48	0.23	0.61	1.00	0.21	0.17	-0.36	-0.39	-0.34	0.55	0.47	0.38
$M_{\rm G}^*$	-0.06	0.06	0.03	-0.57	-0.36	-0.06	-0.08	0.00	0.38	0.47	-0.06	-0.02	0.13	0.26	-0.04	-0.05	-0.04	0.02	-0.03	0.05	-0.14	0.02	0.21	1.00	0.95	-0.71	-0.63	0.01	0.51	0.54	0.74
$M_{\rm B}^*$	-0.01	0.01	0.05	-0.61	-0.41	-0.07	-0.06	0.00	0.34	0.43	-0.02	-0.02	0.11	0.23	-0.01	-0.04	0.01	0.02	-0.03	0.03	-0.13	0.01	0.17	0.95	1.00	-0.67	-0.58	0.05	0.46	0.50	0.69
$n_{\rm c}^*$	-0.35	-0.34	0.15	0.28	0.08	-0.04	0.15	-0.00	-0.60	-0.68	0.32	0.04	-0.22	-0.48	0.18	0.15	0.31	-0.03	0.04	-0.09	0.24	-0.05	-0.36	-0.71	-0.67	1.00	0.91	0.28	-0.77	-0.82	-0.93
$ ho_{ m c}^{*}$	-0.43	-0.43	0.20	0.19	-0.01	-0.08	0.16	-0.00	-0.65	-0.71	0.40	0.05	-0.23	-0.54	0.21	0.19	0.39	-0.04	0.05	-0.09	0.27	-0.04	-0.39	-0.63	-0.58	0.91	1.00	0.37	-0.82	-0.90	-0.87
$P_{\rm c}^*$	-0.91	-0.91	0.42	-0.43	-0.64	-0.25	0.16	0.00	-0.48	-0.41	0.72	0.07	-0.20	-0.53	0.29	0.28	0.81	-0.03	0.05	-0.08	0.26	-0.04	-0.34	0.01	0.05	0.28	0.37	1.00	-0.45	-0.44	-0.25
$R_{1.4}$	0.52	0.52	-0.18	-0.09	0.11	-0.01	-0.20	0.01	0.64	0.68	-0.45	0.01	0.35	0.49	-0.35	-0.08	-0.46	-0.03	-0.02	0.20	-0.16	0.19	0.55	0.51	0.46	-0.77	-0.82	-0.45	1.00	0.91	0.76
$\Lambda_{1.4}$	0.50	0.50	-0.21	-0.12	0.09	0.05	-0.19	0.01	0.66	0.70	-0.45	-0.04	0.28	0.54	-0.28	-0.15	-0.45	0.00	-0.04	0.14	-0.23	0.11	0.47	0.54	0.50	-0.82	-0.90	-0.44	0.91	1.00	0.81
$R_{2.0}$	-0.32	0.32	-0.11	-0.31	-0.10	0.00	-0.15	0.01	0.57	0.65	-0.29	-0.03	0.23	0.44	-0.19	-0.12	-0.28	0.01	-0.04	0.11	-0.20	0.08	0.38	0.74	0.69	-0.93	-0.87	-0.25	0.76	0.81	1.00

15 (20)

	$\Gamma_{\sigma,0}$	$\Gamma_{\omega,0}$	$\Gamma_{ ho,0}$	a_{σ}	a_{ω}	$a_{ ho}$	$n_{\rm sat}$	$E_{\rm sat}$	$K_{\rm sat}$	$Q_{\rm sat}$	$Z_{\rm sat}$	$J_{\rm sym}$	$L_{\rm sym}$	$K_{\rm sym}$	$Q_{\rm sym}$	$Z_{\rm sym}$	$m_{\rm eff}$	\widetilde{E}_1	\widetilde{E}_2	\widetilde{E}_3	P_1	P_2	P_3	$M_{\rm G}^*$	$M_{\rm B}^*$	$n_{\rm c}^*$	$ ho_{ m c}^{*}$	$P_{\rm c}^*$	$R_{1.4}$	$\Lambda_{1.4}$	$R_{2.0}$
$\Gamma_{\sigma,0}$	1.00	0.99	-0.21	0.35	0.58	0.00	-0.17	0.01	0.58	0.50	-0.77	-0.00	0.08	0.08	-0.15	-0.01	-0.86	-0.03	-0.03	0.08	-0.01	0.05	0.12	0.09	0.04	-0.38	-0.46	-0.83	0.35	0.43	0.34
$\Gamma_{\omega,0}$	0.99	1.00	-0.21	0.35	0.58	0.00	-0.16	0.02	0.59	0.51	-0.79	-0.00	0.09	0.08	-0.15	-0.01	-0.87	-0.03	-0.03	0.08	-0.01	0.05	0.12	0.08	0.03	-0.37	-0.46	-0.83	0.35	0.42	0.33
$\Gamma_{ ho,0}$	-0.21	-0.21	1.00	-0.12	-0.20	0.00	-0.24	-0.00	-0.26	-0.22	0.30	0.62	-0.07	-0.12	0.21	-0.05	0.27	0.19	0.35	0.57	0.10	-0.01	-0.06	0.01	0.02	0.08	0.11	0.22	-0.11	-0.12	-0.08
a_{σ}	-0.35	0.35	-0.12	1.00	0.76	0.01	-0.08	-0.02	-0.02	-0.11	-0.30	-0.01	0.02	0.02	-0.08	0.01	-0.34	-0.01	-0.01	0.03	0.01	0.02	0.03	-0.55	-0.59	0.25	0.17	-0.43	-0.03	-0.07	-0.25
a_{ω}	0.58	0.58	-0.20	0.76	1.00	0.01	-0.06	0.00	0.22	0.13	-0.53	-0.00	0.06	0.05	-0.12	0.00	-0.58	-0.03	-0.03	0.04	-0.00	0.04	0.07	-0.33	-0.38	0.04	-0.05	-0.63	0.10	0.10	-0.05
$a_{ ho}$	-0.00	0.00	0.00	0.01	0.01	1.00	-0.00	0.00	-0.01	-0.01	0.00	-0.00	-0.88	0.43	0.67	-0.90	0.00	0.80	0.60	-0.20	-0.85	-0.91	-0.85	0.02	0.07	0.03	0.00	0.02	-0.51	-0.30	-0.20
$n_{\rm sat}$	-0.17	-0.16	-0.24	-0.08	-0.06	-0.00	1.00	0.00	0.06	0.05	-0.05	-0.00	0.02	0.02	-0.03	0.01	0.02	-0.03	-0.06	-0.13	-0.02	-0.02	-0.04	-0.09	-0.07	0.17	0.18	0.17	-0.15	-0.19	-0.17
$E_{\rm sat}$	-0.01	0.02	-0.00	-0.02	0.00	0.00	0.00	1.00	-0.01	0.05	-0.05	0.00	0.00	0.00	-0.00	-0.00	-0.01	0.02	0.04	0.07	0.01	0.00	0.00	0.01	0.01	-0.01	-0.01	-0.00	0.00	0.01	0.01
$K_{\rm sat}$	0.58	0.59	-0.26	-0.02	0.22	-0.01	0.06	-0.01	1.00	0.87	-0.67	0.00	0.09	0.09	-0.14	-0.01	-0.63	-0.04	-0.05	0.03	-0.03	0.04	0.11	0.38	0.34	-0.60	-0.65	-0.48	0.39	0.51	0.54
$Q_{\rm sat}$	-0.50	0.51	-0.22	-0.11	0.13	-0.01	0.05	0.05	0.87	1.00	-0.58	0.00	0.09	0.08	-0.12	-0.01	-0.54	-0.03	-0.05	0.04	-0.03	0.04	0.10	0.48	0.44	-0.68	-0.71	-0.40	0.40	0.53	0.60
$Z_{\rm sat}$	-0.77	-0.79	0.30	-0.30	-0.53	0.00	-0.05	-0.05	-0.67	-0.58	1.00	-0.00	-0.10	-0.09	0.16	0.00	0.90	0.04	0.05	-0.05	0.02	-0.05	-0.11	-0.08	-0.04	0.35	0.42	0.70	-0.31	-0.38	-0.31
J_{sym}	-0.00	-0.00	0.62	-0.01	-0.00	-0.00	-0.00	0.00	0.00	0.00	-0.00	1.00	-0.03	-0.09	0.15	-0.06	0.00	0.19	0.38	0.72	0.09	-0.00	-0.04	-0.01	-0.01	0.01	0.02	0.03	-0.05	-0.05	-0.03
$L_{\rm sym}$	-0.08	0.09	-0.07	0.02	0.06	-0.88	0.02	0.00	0.09	0.09	-0.10	-0.03	1.00	-0.36	-0.75	0.89	-0.09	-0.82	-0.63	0.18	0.80	0.92	0.93	-0.01	-0.06	-0.08	-0.06	-0.10	0.58	0.37	0.24
$K_{\rm sym}$	-0.08	0.08	-0.12	0.02	0.05	0.43	0.02	0.00	0.09	0.08	-0.09	-0.09	-0.36	1.00	0.14	-0.41	-0.09	0.32	0.23	-0.20	-0.54	-0.42	-0.35	0.08	0.09	-0.13	-0.17	-0.17	-0.07	0.08	0.07
$Q_{ m sym}$	-0.15	-0.15	0.21	-0.08	-0.12	0.67	-0.03	-0.00	-0.14	-0.12	0.16	0.15	-0.75	0.14	1.00	-0.69	0.16	0.72	0.63	-0.04	-0.57	-0.69	-0.75	0.03	0.08	0.10	0.10	0.18	-0.61	-0.41	-0.26
$Z_{\rm sym}$	-0.01	-0.01	-0.05	0.01	0.00	-0.90	0.01	-0.00	-0.01	-0.01	0.00	-0.06	0.89	-0.41	-0.69	1.00	0.01	-0.85	-0.66	0.14	0.83	0.91	0.86	-0.05	-0.10	-0.00	0.02	-0.02	0.50	0.29	0.17
$m_{\rm eff}$	-0.86	-0.87	0.27	-0.34	-0.58	0.00	0.02	-0.01	-0.63	-0.54	0.90	0.00	-0.09	-0.09	0.16	0.01	1.00	0.04	0.05	-0.05	0.02	-0.05	-0.11	-0.06	-0.02	0.34	0.42	0.77	-0.32	-0.39	-0.30
\widetilde{E}_1	-0.03	-0.03	0.19	-0.01	-0.03	0.80	-0.03	0.02	-0.04	-0.03	0.04	0.19	-0.82	0.32	0.72	-0.85	0.04	1.00	0.80	-0.01	-0.69	-0.79	-0.80	0.03	0.08	0.03	0.01	0.05	-0.51	-0.31	-0.20
\widetilde{E}_2	-0.03	-0.03	0.35	-0.01	-0.03	0.60	-0.06	0.04	-0.05	-0.05	0.05	0.38	-0.63	0.23	0.63	-0.66	0.05	0.80	1.00	0.19	-0.49	-0.60	-0.63	0.02	0.06	0.04	0.03	0.06	-0.45	-0.29	-0.19
\widetilde{E}_3	-0.08	0.08	0.57	0.03	0.04	-0.20	-0.13	0.07	0.03	0.04	-0.05	0.72	0.18	-0.20	-0.04	0.14	-0.05	-0.01	0.19	1.00	0.31	0.21	0.18	0.01	-0.02	-0.06	-0.05	-0.05	0.15	0.11	0.09
P_1	-0.01	-0.01	0.10	0.01	-0.00	-0.85	-0.02	0.01	-0.03	-0.03	0.02	0.09	0.80	-0.54	-0.57	0.83	0.02	-0.69	-0.49	0.31	1.00	0.87	0.79	-0.06	-0.10	0.02	0.05	0.01	0.45	0.24	0.14
P_2	-0.05	0.05	-0.01	0.02	0.04	-0.91	-0.02	0.00	0.04	0.04	-0.05	-0.00	0.92	-0.42	-0.69	0.91	-0.05	-0.79	-0.60	0.21	0.87	1.00	0.91	-0.03	-0.08	-0.05	-0.02	-0.07	0.55	0.33	0.21
P_3	0.12	0.12	-0.06	0.03	0.07	-0.85	-0.04	0.00	0.11	0.10	-0.11	-0.04	0.93	-0.35	-0.75	0.86	-0.11	-0.80	-0.63	0.18	0.79	0.91	1.00	0.01	-0.05	-0.11	-0.10	-0.14	0.63	0.41	0.28
$M_{\rm G}^*$	-0.09	0.08	0.01	-0.55	-0.33	0.02	-0.09	0.01	0.38	0.48	-0.08	-0.01	-0.01	0.08	0.03	-0.05	-0.06	0.03	0.02	0.01	-0.06	-0.03	0.01	1.00	0.93	-0.69	-0.61	-0.01	0.27	0.40	0.63
$M_{\rm B}^*$	-0.04	0.03	0.02	-0.59	-0.38	0.07	-0.07	0.01	0.34	0.44	-0.04	-0.01	-0.06	0.09	0.08	-0.10	-0.02	0.08	0.06	-0.02	-0.10	-0.08	-0.05	0.93	1.00	-0.63	-0.55	0.05	0.20	0.33	0.55
$n_{\rm c}^*$	-0.38	-0.37	0.08	0.25	0.04	0.03	0.17	-0.01	-0.60	-0.68	0.35	0.01	-0.08	-0.13	0.10	-0.00	0.34	0.03	0.04	-0.06	0.02	-0.05	-0.11	-0.69	-0.63	1.00	0.91	0.31	-0.45	-0.64	-0.81
$ ho_{ m c}^{*}$	-0.46	-0.46	0.11	0.17	-0.05	0.00	0.18	-0.01	-0.65	-0.71	0.42	0.02	-0.06	-0.17	0.10	0.02	0.42	0.01	0.03	-0.05	0.05	-0.02	-0.10	-0.61	-0.55	0.91	1.00	0.40	-0.46	-0.65	-0.76
$P_{\rm c}^*$	-0.83	-0.83	0.22	-0.43	-0.63	0.02	0.17	-0.00	-0.48	-0.40	0.70	0.03	-0.10	-0.17	0.18	-0.02	0.77	0.05	0.06	-0.05	0.01	-0.07	-0.14	-0.01	0.05	0.31	0.40	1.00	-0.35	-0.43	-0.30
$R_{1.4}$	-0.35	0.35	-0.11	-0.03	0.10	-0.51	-0.15	0.00	0.39	0.40	-0.31	-0.05	0.58	-0.07	-0.61	0.50	-0.32	-0.51	-0.45	0.15	0.45	0.55	0.63	0.27	0.20	-0.45	-0.46	-0.35	1.00	0.77	0.61
$\Lambda_{1.4}$	-0.43	0.42	-0.12	-0.07	0.10	-0.30	-0.19	0.01	0.51	0.53	-0.38	-0.05	0.37	0.08	-0.41	0.29	-0.39	-0.31	-0.29	0.11	0.24	0.33	0.41	0.40	0.33	-0.64	-0.65	-0.43	0.77	1.00	0.76
$R_{2.0}$	-0.34	0.33	-0.08	-0.25	-0.05	-0.20	-0.17	0.01	0.54	0.60	-0.31	-0.03	0.24	0.07	-0.26	0.17	-0.30	-0.20	-0.19	0.09	0.14	0.21	0.28	0.63	0.55	-0.81	-0.76	-0.30	0.61	0.76	1.00

16 (20)

 $\Gamma_{\sigma,0}$ $\Gamma_{\omega,0}$ $\Gamma_{\rho,0}$ a_{σ} $a_{\rho} n_{\text{sat}} E_{\text{sat}} K_{\text{sat}} Q_{\text{sat}} Z_{\text{sat}} J_{\text{sym}} L_{\text{sym}} K_{\text{sym}} Q_{\text{sym}} Z_{\text{sym}} m_{\text{eff}} E_1 E_2 E_3 P_1 P_2$ $P_3 M_{\rm G}^* M_{\rm B}^* n_{\rm c}^*$ $P_{\rm c}^* R_{1.4} \Lambda_{1.4} R_{2.0}$ a_{ω} 0.00 0.00 -0.22-0.01-0.00 -0.11 0.01 -0.02 0.03 0.03 -0.02-0.14 0.06 0.14 -0.18 0.06 -0.01-0.13-0.17-0.10 0.04 0.05 0.03 0.03 0.03 -0.04-0.04 0.04 0.04 0.04 0.04 $\Gamma_{\sigma,0}$ -0.00 0.00 -0.22-0.01-0.00-0.11 0.01 -0.02 0.03 0.03 -0.02-0.14 0.06 0.14 -0.18 0.06 -0.01-0.12-0.17 -0.10 0.04 0.05 0.03 0.03 0.03 -0.04-0.04 0.01 0.04 0.04 0.04 0.04 $\Gamma_{\omega,0}$ +0.22-0.22 0.00 -0.09-0.15-0.67 0.10 -0.04-0.17-0.16 0.20 -0.14 0.59 -0.00 -0.68 0.82 0.21 -0.61 -0.11-0.13 0.31 0.59 0.51 -0.08-0.07 0.16 0.18 0.22 0.07 -0.05-0.08 $\Gamma_{\rho,0}$ -0.01-0.01-0.09 0.00 -0.01-0.04 0.01 -0.01 0.02 0.02 0.01 -0.05 0.00 -0.01-0.04 0.01 0.01 -0.02-0.04-0.03 0.00 0.00 -0.00 0.02 0.02 -0.02-0.02 0.03 0.02 0.02 0.03 a_{σ} a_{ω} -0.11-0.11-0.67-0.04-0.06 0.00 0.13 -0.07-0.05-0.06 0.07 -0.82 -0.07 0.23 0.03 -0.07 0.08 -0.15-0.78-0.86-0.34-0.07-0.09-0.02 0.00 0.06 0.06 0.09 -0.09-0.08-0.05 a_{ρ} -0.01 0.01 0.10 0.01 0.01 0.13 0.00 0.02 -0.01 -0.01 0.01 0.19 -0.15 -0.08 0.16 -0.15 0.00 0.16 0.10 0.08 -0.04 -0.13 -0.12 0.00 0.00 -0.01 -0.01 -0.01 -0.04 -0.02 -0.01 $n_{\rm sat}$ -0.02-0.02-0.04-0.01-0.01-0.07 0.02 0.00 -0.01-0.01 0.01 -0.05 0.06 0.03 -0.08 0.08 0.01 -0.06-0.03-0.02 0.02 0.05 0.05 -0.01-0.01 0.01 0.01 0.01 0.01 0.00 -0.00 $E_{\rm sat}$ 0.03 0.03 -0.17 0.02 0.03 -0.05 -0.01 -0.01 0.00 0.00 -0.02 -0.08 0.01 0.15 -0.14 0.01 -0.03 -0.08 -0.14 -0.07 0.04 0.01 -0.01 0.01 0.01 -0.02 -0.03 -0.04 0.00 0.02 0.02 $K_{\rm sat}$ -0.03 0.03 -0.16 0.02 0.03 -0.06 -0.01 -0.01 0.00 0.00 -0.03 -0.08 0.02 0.16 -0.14 0.02 -0.03 -0.08 -0.14 -0.06 0.04 0.02 0.00 0.01 0.01 -0.02 -0.02 -0.05 0.01 0.02 0.02 $Q_{\rm sat}$ -0.01-0.11 0.14 -0.02 0.01 0.08 0.14 0.07 -0.03-0.01 0.01 -0.03-0.03 0.04 0.04 0.02 -0.02-0.03-0.04 $Z_{\rm sat}$ -0.02 - 0.02 0.20 0.01 - 0.00 0.07 0.01 0.01 - 0.02 - 0.03 0.00 0.09-0.14-0.14-0.14-0.05-0.07-0.82 0.19 -0.05-0.08-0.08 0.09 0.00 0.78 0.06 -0.88 0.92 0.10 -0.72 -0.16 -0.12 0.35 0.73 0.64 -0.08 -0.08 0.13 0.15 0.14 0.14 0.00 -0.04 $J_{\rm sym}$ -0.06 0.06 0.59 0.00 0.01 -0.07 -0.15 0.06 0.01 0.02 -0.01 0.78 0.00 -0.23 -0.09 0.02 -0.02 0.15 0.71 0.82 0.30 0.04 0.03 0.03 0.02 -0.05 -0.05 -0.04 0.06 0.05 0.05 $L_{\rm sym}$ 0.14 0.14 -0.00-0.01 0.03 0.23 -0.08 0.03 0.15 0.16 -0.11 0.06 -0.23 0.00 0.27 -0.40 -0.12 0.26 -0.02 0.09 0.07 -0.19 -0.21 0.12 0.12 -0.17 -0.19 -0.13 0.01 0.10 0.12 $K_{\rm sym}$ -0.18-0.18-0.68-0.04-0.08 0.03 0.16 -0.08-0.14 -0.14 0.14 0.14 -0.88-0.09 0.27 0.00 0.11 0.15 -0.29-0.83-0.95-0.37-0.09-0.12-0.07-0.05 0.14 0.14 0.14 -0.15-0.15-0.13 $Q_{\rm sym}$ 0.06 0.06 0.82 0.01 0.02 -0.07 -0.15 0.08 0.01 0.02 -0.02 0.92 0.02 -0.40 0.11 0.00 -0.03 0.28 0.91 0.97 0.50 0.10 0.05 0.01 -0.00 -0.04 -0.03 -0.03 0.05 0.04 0.03 $Z_{\rm sym}$ 0.01-0.01 0.21 0.01 0.00 0.08 0.00 0.01 -0.03-0.03 0.01 0.10 -0.02-0.12 0.15 -0.03 0.00 0.09 0.15 0.08 -0.04-0.02-0.00-0.04-0.04 0.04 0.04 0.01 -0.03-0.04-0.04 $m_{\rm eff}$ 0.16 -0.06 -0.08 -0.08 0.08 -0.72 0.15 0.26 -0.29 0.28 0.09 0.00 -0.65 -0.76 -0.24 0.09 0.09 -0.06 -0.04 0.10 0.11 0.09 -0.05 -0.08 -0.08 \tilde{E}_1 -0.13 - 0.12 - 0.61 - 0.02 - 0.05 - 0.150.17 - 0.17 - 0.11 - 0.04 - 0.09 - 0.78 0.10 - 0.03 - 0.14 - 0.14 0.14 - 0.16 0.71 - 0.02 - 0.83 0.91 0.15 - 0.65 0.00 - 0.13 0.39 0.73 0.63 - 0.10 - 0.10 0.15 0.18 0.16 0.12 - 0.03 - 0.07 \tilde{E}_2 -0.10-0.10-0.13-0.03-0.05-0.86 0.08 -0.02-0.07-0.06 0.07 -0.12 0.82 0.09 -0.95 0.97 0.08 -0.76-0.13 0.00 0.41 0.85 0.76 -0.06 -0.06 0.09 0.10 0.10 0.21 0.06 0.00 E_3 0.04 0.04 0.31 0.00 0.01 -0.34 -0.04 0.02 0.04 0.04 -0.03 0.35 0.30 0.07 -0.37 0.50 -0.04 -0.24 0.39 0.41 0.00 0.28 0.29 0.01 -0.01 -0.03 -0.03 -0.04 0.16 0.11 0.06 P_1 0.05 0.05 0.59 0.00 0.01 -0.07 -0.13 0.05 0.01 0.02 -0.01 0.73 0.04 -0.19 -0.09 0.10 -0.02 0.09 0.73 0.85 0.28 0.00 0.05 0.02 0.01 -0.05 -0.04 -0.03 0.06 0.05 0.04 P_2 -0.03 0.03 0.51 -0.00 0.00 -0.09 -0.12 0.05 -0.01 0.00 0.64 0.03 -0.21 -0.12 0.05 -0.00 0.09 0.63 0.76 0.29 0.05 0.00 0.02 0.01 -0.03 -0.02 -0.01 0.03 0.02 0.02 P_3 0.01 -0.03 0.03 -0.08 0.02 0.03 -0.02 0.00 -0.01 -0.03-0.08 0.03 0.12 -0.07 0.01 -0.04-0.06-0.10-0.06 0.01 0.02 0.02 0.00 -0.00 0.01 0.00 -0.05-0.00 0.00 -0.01 $M_{\rm G}^*$ 0.010.01 0.01 -0.03 -0.08 0.02 0.12 -0.05 -0.00 -0.04 -0.04 -0.10 -0.06 -0.01 0.01 0.01 -0.00 0.00 0.01 0.00 -0.05 -0.01 -0.00 -0.01 $-0.03 \ 0.03 \ -0.07 \ 0.02 \ 0.03 \ 0.00$ $M_{\rm B}^*$ -0.02-0.02 0.04 0.13 -0.05-0.17 0.14 -0.04 0.04 0.10 0.15 0.09 -0.03-0.05-0.03 0.01 0.01 0.00 0.00 0.05 -0.01-0.01-0.01 -0.04-0.04 0.16 -0.02-0.04 0.06 n_c^* 0.04-0.04 0.18 -0.02-0.04 0.06 0.15 -0.05 -0.19 0.14 -0.03 0.04 0.11 0.18 0.10 -0.03 -0.04 -0.02 0.00 0.00 0.00 0.00 0.05 0.01 -0.00 0.00 0.01 -0.03 -0.02 0 ρ_{c} P_c^* -0.01-0.01 0.22 0.03 0.01 0.09 -0.01 0.01 -0.04-0.05 0.02 0.14 -0.04-0.13 0.14 -0.03 0.01 0.09 0.16 0.10 -0.04-0.03-0.01-0.05-0.05 0.05 0.05 0.00 -0.03-0.04-0.05 -0.04 0.04 0.07 0.02 0.03 -0.09 -0.04 0.01 0.00 -0.02 0.14 0.06 0.01 -0.15 0.05 -0.03 -0.05 0.12 0.21 0.16 0.06 0.03 -0.00 -0.01 -0.01 0.01 -0.03 0.00 -0.00 0.00 $R_{1.4}$ 0.01 +0.04 0.04 -0.05 0.02 0.03 -0.08 -0.02 0.00 0.02 0.02 -0.03 0.00 0.05 0.10 -0.15 0.04 -0.04 -0.08 -0.03 0.06 0.11 0.05 0.02 0.00 -0.00 -0.01 -0.00 -0.04 -0.00 0.00 0.01 $\Lambda_{1.4}$ R20 00.04 0.04 -0.08 0.03 0.04 -0.05 -0.01 -0.00 0.02 0.02 -0.04 -0.04 0.05 0.12 -0.13 0.03 -0.04 -0.08 -0.07 0.00 0.06 0.04 0.02 -0.01 -0.01 0.00 -0.05 0.00 0.01 0.00

17 (20)

 $a_{\rho} \quad n_{\text{sat}} \quad E_{\text{sat}} \quad K_{\text{sat}} \quad Q_{\text{sat}} \quad Z_{\text{sat}} \quad J_{\text{sym}} \quad L_{\text{sym}} \quad K_{\text{sym}} \quad Q_{\text{sym}} \quad Z_{\text{sym}} \quad m_{\text{eff}} \quad E_1 \quad E_2 \quad E_3 \quad P_1 \quad P_2 \quad P_3 \quad M_{\text{G}}^* \quad M_{\text{B}}^* \quad n_{\text{c}}^*$ $\Gamma_{\sigma,0}$ $\Gamma_{\omega,0}$ $\Gamma_{\rho,0}$ a_{σ} $P_{\rm c}^* R_{1.4} \Lambda_{1.4} R_{2.0}$ a_{ω} -0.00 -0.00 -0.29 -0.01 -0.00 -0.02 0.04 -0.02 0.00 0.01 -0.00 -0.13 0.14 0.19 -0.26 -0.02 -0.00 -0.10 -0.15 -0.05 -0.04 0.07 0.15 0.01 0.01 -0.01 -0.01 -0.01 0.04 0.02 0.01 $\Gamma_{\sigma,0}$ -0.00 0.00 -0.29-0.01-0.00 -0.02 0.04 -0.02 0.00 0.01 -0.00 -0.12 0.14 0.19 -0.26 -0.02 -0.00 -0.09 -0.15 -0.05 -0.04 0.07 0.15 0.01 0.01 -0.01 -0.01 -0.01 0.04 0.02 0.01 $\Gamma_{\omega,0}$ $\Gamma_{\rho,0}$ -0.29-0.29 0.00 -0.12-0.20-0.52 0.06 -0.09-0.23-0.22 0.30 -0.34 0.28 -0.04-0.37 0.65 0.29 -0.44 -0.23-0.29 0.19 0.40 0.25 -0.05-0.04 0.16 0.18 0.27 -0.04-0.12-0.10 a_{σ} 0.00 - 0.00 - 0.20 - 0.01 0.00 0.03 0.02 - 0.01 - 0.00 0.01 0.01 - 0.06 0.06 0.07 - 0.14 - 0.05 0.01 - 0.04 - 0.07 - 0.03 - 0.01 0.03 0.06 0.01 0.01 - 0.01 - 0.01 0.01 0.02 0.01 0.01 a_{ω} -0.02-0.02-0.52 0.04 0.03 0.00 0.05 -0.05 -0.04 -0.04 0.02 -0.64 0.13 0.26 -0.16 -0.03 0.01 -0.24 -0.58 -0.64 -0.25 0.05 0.13 -0.05 -0.05 0.05 0.04 -0.00 0.05 0.01 -0.02 a_{ρ} -0.04 0.04 0.06 0.01 0.02 0.05 0.00 0.02 0.03 0.03 -0.03 0.31 -0.02 -0.08 0.06 -0.08 -0.03 0.13 0.13 0.11 0.01 -0.09 -0.09 0.01 0.01 -0.03 -0.03 -0.02 -0.01 0.01 0.01 0.01 $n_{\rm sat}$ $E_{\rm sat}$ $K_{\rm sat}$ -0.01 0.01 0.00 -0.02 -0.02 0.16 0.19 -0.23 -0.02 -0.06 -0.11 -0.02 -0.04 0.05 0.13 0.00 0.00 0.00 0.00 -0.02 0.04 0.01 -0.00 $-0.01 \ 0.01 \ -0.22 \ 0.00 \ 0.01 \ -0.04 \ 0.03$ $Q_{\rm sat}$ -0.00-0.00 0.30 0.02 0.01 0.02 -0.03 0.01 -0.01-0.02 0.00 0.03 -0.14-0.16 0.25 0.04 -0.00 0.06 0.11 0.02 0.03 -0.05-0.11-0.02-0.03 0.02 0.02 -0.01-0.03-0.02-0.02 $Z_{\rm sat}$ -0.13-0.12-0.34-0.05-0.06 0.64 0.31 -0.11-0.01-0.02 0.03 0.00 0.63 0.13 -0.69 0.70 0.06 -0.49-0.24-0.22 0.19 0.55 0.44 -0.06-0.06 0.11 0.13 0.12 0.04 -0.04-0.06 $J_{\rm sym}$ -0.14 0.14 0.28 0.01 0.06 0.13 -0.02 0.04 0.16 0.16 -0.14 0.63 0.00 -0.09-0.03-0.19-0.14 0.26 0.50 0.63 0.07 -0.09-0.07 0.08 0.07 -0.12-0.13-0.11 0.04 0.08 0.09 $L_{\rm sym}$ 0.19 0.19 -0.04 0.01 0.07 0.26 -0.08 0.04 0.18 0.19 -0.16 0.13 -0.09 0.00 0.13 -0.42 -0.17 0.24 0.05 0.15 -0.01 -0.15 -0.05 0.10 0.09 -0.17 -0.19 -0.16 0.10 0.14 0.13 $K_{\rm sym}$ -0.26-0.26-0.37-0.06-0.14-0.16 0.06 -0.09-0.24-0.23 0.25 -0.69-0.03 0.13 0.00 0.29 0.25 -0.35-0.59-0.73-0.14 0.03 -0.03-0.09-0.07 0.18 0.19 0.21 -0.11-0.15-0.13 $Q_{\rm sym}$ 0.02-0.02 0.65 -0.04 -0.05 -0.03 -0.08 0.07 -0.03 -0.02 0.04 0.70 -0.19 -0.42 0.29 0.00 0.04 0.32 0.67 0.72 0.39 -0.03 -0.18 0.02 0.02 -0.01 0.01 0.05 -0.10 -0.06 -0.02 $Z_{\rm sym}$ 0.00-0.00 0.29 0.01 0.01 0.01 -0.03 0.01 -0.00-0.02-0.00 0.06 -0.14-0.17 0.25 0.04 0.00 0.07 0.12 0.03 0.03 -0.06-0.12-0.02-0.02 0.01 0.01 -0.00-0.03-0.02-0.02 $m_{\rm eff}$ 0.10-0.09-0.44-0.02-0.04-0.24 0.13 -0.05-0.05-0.06 0.06 -0.49 0.26 0.24 -0.35 0.32 0.07 0.00 -0.36-0.49-0.10 0.20 0.21 -0.05-0.04 0.08 0.08 0.07 0.04 -0.02-0.04 \tilde{E}_1 -0.15-0.15-0.23-0.03-0.07-0.58 0.13 -0.04-0.11-0.11 0.11 -0.24 0.50 0.05 -0.59 0.67 0.12 -0.36 0.00 -0.17 0.24 0.54 0.43 -0.08-0.08 0.14 0.15 0.14 0.04 -0.05-0.08 \tilde{E}_2 -0.05-0.05-0.29-0.02-0.03-0.64 0.11 -0.04-0.01-0.02 0.02 -0.22 0.63 0.15 -0.73 0.72 0.03 -0.49-0.17 0.00 0.24 0.69 0.59 -0.03-0.03 0.05 0.05 0.05 0.15 0.05 0.01 E_3 -0.04-0.04 0.19 0.00 -0.01-0.25 0.01 -0.01-0.03-0.04 0.03 0.19 0.07 -0.01-0.14 0.39 0.03 -0.10 0.24 0.24 0.00 0.15 0.04 -0.03-0.03 0.04 0.04 0.03 -0.03-0.03-0.03 P_1 -0.07 0.07 0.40 0.01 0.03 0.05 -0.09 0.03 0.05 0.05 -0.05 0.55 -0.09 -0.15 0.03 -0.03 -0.06 0.20 0.54 0.69 0.15 0.00 -0.07 0.04 0.03 -0.06 -0.06 -0.06 -0.01 0.02 0.03 P_2 0.15 0.15 0.25 0.01 0.06 0.13 -0.09 0.03 0.12 0.13 -0.11 0.44 -0.07 -0.05 -0.03 -0.18 -0.12 0.21 0.43 0.59 0.04 -0.07 0.00 0.09 0.07 -0.14 -0.14 -0.12 0.07 0.10 0.10 0.10 P_3 -0.01 0.01 -0.05 0.00 0.01 -0.05 0.01 -0.01 0.01 0.00 -0.02 -0.06 0.08 0.10 -0.09 0.02 -0.02 -0.02 -0.05 -0.08 -0.03 -0.03 0.04 0.09 0.00 -0.00 -0.00 -0.00 -0.02 0.03 0.01 0.01 $M_{\rm G}^*$ -0.01 0.01 0.00 -0.03-0.06 0.07 0.09 -0.07 0.02 -0.02-0.04-0.08-0.03-0.03 0.03 0.07 0.00 0.00 -0.00-0.01-0.02 0.03 0.01 0.01 -0.01 0.01 -0.04 0.01 0.01 -0.05 0. $M_{\rm B}^*$ 03 0.01 -0.01 0.00 0.02 0.11 -0.12-0.17 0.18 -0.01 0.01 0.08 0.14 0.05 0.04 -0.06 -0.14 -0.00 -0.00 0.00 0.00 0.02 -0.06 -0.03 -0.02 n_c^* -0.01-0.01 0.18 -0.00-0.01 0.04 -0.03 0.01 -0.01 0.00 0.02 0.13 -0.13 -0.19 0.19 0.01 0.01 0.08 0.15 0.05 0.04 -0.06-0.14 -0.00-0.01 0.00 0.00 0.02 -0.08 -0.04 -0.02 ρ_{c} P_c^* -0.01-0.01 0.27 0.01 0.01 -0.00-0.02 0.01 -0.00-0.02-0.01 0.12 -0.11-0.16 0.21 0.05 -0.00 0.07 0.14 0.05 0.03 -0.06-0.12-0.02-0.02 0.02 0.02 0.00 -0.04-0.02-0.02 0.04 0.04 0.04 0.00 0.02 0.05 -0.01 -0.00 0.03 0.04 -0.03 0.04 0.04 0.04 0.10 -0.11 -0.10 -0.03 0.04 0.04 0.15 -0.03 -0.01 0.07 0.03 0.03 -0.06 -0.08 -0.04 0.00 0.04 0.03 $R_{1.4}$ $\Lambda_{1.4}$ R20 001 0.01 -0.10 0.00 0.01 -0.02 0.01 -0.01 0.01 -0.00 -0.02 -0.06 0.09 0.13 -0.13 -0.02 -0.02 -0.04 -0.08 0.01 -0.03 0.03 0.10 0.01 0.01 -0.02 -0.02 -0.02 0.03 0.01 0.00

Conclusions

- We have employed a simplified version of DD CDF model in a Bayesian analysis to study the impact of various constraints from nuclear physics and astrophysics on the EOS of dense matter.
- We have demonstrated that constraints on PNM obtained from microscopic χEFT calculations impact only isovector behavior of NM EOS. Moreover, the results are not the same when the constraints are imposed on energy per nucleon, pressure or both.
- The importance of constraints on PNM is emphasized by the fact that without them a noticeable fraction of the models have negative values of L_{sym} and/or pressure of PNM, including pressure at saturation density.

Conclusions

- We have explicitly shown that correlations are *model* and *setup* dependent and, thus, they have to be treated with great caution.
- The strongest correlations that we have found between the parameters of NM and properties of NSs and that seem to be universal (model-independent) are: $K_{\text{sat}} R_{1.4,2.0}$, $Q_{\text{sat}} R_{1.4,2.0}$
- $R_{2.0} n_c^*$ correlation also seems to be universal.
- Last, but not least, technicalities related to implementationdependent specifics also might play an important role and affect the results.

All figures presented here are taken from our paper, ArXiv: 2212.07168

Thank you!

The model has six parameters: 3 nucleon-meson coupling strengths at saturation density (n_{sat}) and 3 parameters describing the density dependence of those coupling strengths (hence, DD model):

$$\Gamma_{M}(n) = \Gamma_{M,0}h_{M}(x), \ x = \frac{n}{n_{\text{sat}}}, \ M = \sigma, \omega, \rho$$

$$h_{\sigma}(n) = \exp\left[-\left(x^{a_{\sigma}} - 1\right)\right]$$

$$h_{\omega}(n) = \exp\left[-\left(x^{a_{\omega}} - 1\right)\right]$$

$$h_{\rho}(n) = \exp\left[-a_{\rho}(x-1)\right]$$

Six parameters $\{\Gamma_{\sigma,0}, \Gamma_{\omega,0}, \Gamma_{\rho,0}, a_{\sigma}, a_{\omega}, a_{\rho}\}$ completely determine the model.

<u>Note:</u> n_{sat} has to be determined self-consistently with the above equations using the fact that the pressure of SNM at saturation is zero.

Corner plot of 1D and 2D marginalized posterior distributions of the *input* parameters of our baseline model:

Aux03 (04)2D correlationsplotsthatarenotcoveredinthepreviouscornerplots;baseline

Aux

04 (04)

1D marginalized posterior distributions of the *input* parameters of different considered models:

