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After Anthea’s and Adriana’s talks you have some grasp of
neutron stars and how studying them improves our understanding
of dense matter, its properties and equation of state.

The purpose of our work is to investigate how different
combinations of nuclear matter and neutron stars constraints
affect the properties of dense matter.
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We employ simplified density dependent (DD) Covariant Density
Functionals (CDF) model proposed by Malik et al. [ApJ 930, 17
(2022)].

Interactions are mediated by mesonic fields: 𝜎𝜎, 𝜔𝜔, 𝜌𝜌.
• 𝜎𝜎 and 𝜔𝜔: isoscalar channel (attraction and repulsion);
• 𝜌𝜌:           isovector channel (difference between protons and 

neutrons).

The model has six parameters:
• Γ𝜎𝜎,0, Γ𝜔𝜔,0, Γ𝜌𝜌,0 determine properties at saturation density (𝑛𝑛sat);
• 𝑎𝑎𝜎𝜎 ,𝑎𝑎𝜔𝜔 ,𝑎𝑎𝜌𝜌 determine the density dependent behavior.
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Energy per nucleon is expressed in terms of deviations from
saturation density (𝑛𝑛sat) and isospin symmetry (𝛿𝛿 = 0):
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Note that:

• 𝑋𝑋sat
(𝑖𝑖) depend on Γ𝜎𝜎,0, Γ𝜔𝜔,0, 𝑎𝑎𝜎𝜎 ,𝑎𝑎𝜔𝜔

• 𝑋𝑋sym
(𝑖𝑖) mostly depend on Γ𝜌𝜌,0 and 𝑎𝑎𝜌𝜌



We have considered the following NM and astrophysics
constraints (targets), which we treated as independent:

Quantity Units Value (𝒅𝒅𝒊𝒊) SD (𝝈𝝈𝒊𝒊) Comments
𝑛𝑛sat fm−3 0.153 0.005 SNM
𝐸𝐸sat MeV −16.1 0.2 SNM
𝐾𝐾sat MeV 230 40 SNM
𝐽𝐽sym MeV 32.5 1.8 SNM <−> PNM
𝑚𝑚eff 𝑚𝑚N 0.55 0.05 SNM at 𝑛𝑛sat

( ⁄𝐸𝐸 𝐴𝐴)1 MeV 9.50 0.52 PNM at 0.08 fm−3

( ⁄𝐸𝐸 𝐴𝐴)2 MeV 12.68 1.20 PNM at 0.12 fm−3

( ⁄𝐸𝐸 𝐴𝐴)2 MeV 16.31 2.13 PNM at 0.16 fm−3

𝑃𝑃1 MeV/fm3 0.509 0.093 PNM at 0.08 fm−3

𝑃𝑃2 MeV/fm3 1.238 0.302 PNM at 0.12 fm−3

𝑃𝑃3 MeV/fm3 2.482 0.687 PNM at 0.16 fm−3

𝑀𝑀G
∗ M⊙ > 2.0 or > 2.2 N/A NS
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With the abovementioned assumptions and given the vector of
model parameters 𝚯𝚯 and vector of constraints (targets) D, the
likelihood function for the “run” q can be written as
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where 𝜉𝜉𝑖𝑖(𝚯𝚯) is the value of quantity i computed from the model
defined by parameters 𝚯𝚯.

Neutron stars maximum mass constraint is introduced as a “hard
wall”. Any models 𝚯𝚯 that result in maximum NS mass less than
the threshold value are immediately rejected by setting their
likelihood to extremely low value ~exp(−106)
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For posterior estimation normalization factors are not relevant.
Most of Bayesian analysis software work with the logarithm of
the likelihood that can be recast into the following form:
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The last crucial ingredient of any Bayesian study is the prior. We
have chosen uniform (uninformative) prior in the following
ranges:

Quantity Units Min. Max.
Γ𝜎𝜎,0 MeV 7.5 13.5
Γ𝜔𝜔,0 MeV 8.5 14.5
Γ𝜌𝜌,0 MeV 2.5 8.0
𝑎𝑎𝜎𝜎 − 0.0 0.30
𝑎𝑎𝜔𝜔 − 0.0 0.30
𝑎𝑎𝜌𝜌 − 0.0 1.30
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We have employed Affine-Invariant Markov Chain Monte-Carlo
method as implemented in the emcee package as our main tool.
We have performed extensive tests of convergence by means of
autocorrelation length analysis, “bootstrap” checks of the
posterior and by comparison with the results calculated
independently via Nested Sampling as implemented in the
dynesty package.
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Corner plot of 1D and 2D marginalized posterior distributions of
some of the output parameters of our baseline model:



Corner plot of 1D and 2D marginalized posterior distributions of
the NS-related output parameters of our baseline model:

Results 12 (20)



1D marginalized pos-
terior distributions of
the output parameters
of different considered
models:
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• We have employed a simplified version of DD CDF model in a
Bayesian analysis to study the impact of various constraints
from nuclear physics and astrophysics on the EOS of dense
matter.

• We have demonstrated that constraints on PNM obtained from
microscopic χEFT calculations impact only isovector behavior
of NM EOS. Moreover, the results are not the same when the
constraints are imposed on energy per nucleon, pressure or
both.

• The importance of constraints on PNM is emphasized by the
fact that without them a noticeable fraction of the models have
negative values of 𝐿𝐿sym and/or pressure of PNM, including
pressure at saturation density.
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• We have explicitly shown that correlations are model and setup
dependent and, thus, they have to be treated with great caution.

• The strongest correlations that we have found between the
parameters of NM and properties of NSs and that seem to be
universal (model-independent) are: 𝐾𝐾sat − 𝑅𝑅1.4,2.0,𝑄𝑄sat − 𝑅𝑅1.4,2.0

• 𝑅𝑅2.0 − 𝑛𝑛c∗ correlation also seems to be universal.

• Last, but not least, technicalities related to implementation-
dependent specifics also might play an important role and
affect the results.

All figures presented here are taken from our paper, ArXiv: 2212.07168
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The model has six parameters: 3 nucleon-meson coupling strengths
at saturation density (𝑛𝑛sat) and 3 parameters describing the density
dependence of those coupling strengths (hence, DD model):

,0
sat

( ) ( ), , , ,MMM
nn h x M

n
x σ ω ρΓ =   = =  Γ    

( )
( )

( )

( ) exp 1

( ) exp 1

( ) exp 1

a

a

h n x

h n x

h n a x

σ

ω

ρ

σ

ω

ρ

 = − − 
 = − − 
 = − − 

Six parameters Γ𝜎𝜎,0, Γ𝜔𝜔,0, Γ𝜌𝜌,0,𝑎𝑎𝜎𝜎 ,𝑎𝑎𝜔𝜔 ,𝑎𝑎𝜌𝜌 completely determine
the model.

Note: 𝑛𝑛sat has to be determined self-consistently with the above
equations using the fact that the pressure of SNM at saturation is zero.
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Corner plot of 1D and 2D marginalized posterior distributions of
the input parameters of our baseline model:
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2D correlations
plots that are
not covered in
the previous
corner plots;
baseline model

Aux 03 (04)



1D marginalized posterior distributions of the input parameters of
different considered models:
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