Nd: will it make a difference in the *i* process?

Hannah C. Berg 18th Russbach School on Nuclear Astrophysics

A.Simon et. al. NIMA 703, 0168-9002 (2013)

So you've heard about the s- and r-process

In between these more well known processes, we have the *intermediate* process, hence the i-process.

- Abundances
- Eu, Ba, Sm

Neutron capture rates only unknown

The path of i-process

Abundances and the neutron-capture processes

Abundances that are not explained by r/s process

Sneak peak on Nds importance

A. Spyrou, D. Mücher et al. (submitted) on ¹³⁹Ba(n,g)¹⁴⁰Ba rate shows effect on heavy element abundance [Ba/La]

Calculations for one set of astronomical parameters, huge error due to nuclear uncertainty

Sneak peak on Nd's importance

A. Spyrou, D. Mücher et al. (submitted) on ¹³⁹Ba(n,g)¹⁴⁰Ba rate shows effect on heavy element abundance [Ba/La]

Now need more nuclear data for Eu abundance

Sensitivity study

How much does the neutron-capture cross section uncertainty affect the **Eu** abundance?

 \mathbf{r}_{p} close to +/- 1, dictates that (n, γ) reaction is more important for final abundance

My experiment -

Element	Reaction	$r_{ m P}$	$r_{\rm S}$
Ba	$^{135}\mathrm{I}$	-0.9325	-0.9348
La	^{139}Cs	-0.6862	-0.8500
	^{139}Ba	-0.4407	-0.4811
Ce	^{140}Cs	-0.2134	-0.1977
	^{140}Ba	-0.8051	-0.9084
\mathbf{Pr}	141 Ba	-0.8670	-0.9834
Nd	$^{144}\mathrm{Ce}$	-0.4964	-0.5267
	$^{146}\mathrm{Ce}$	-0.4886	-0.5395
Sm	147 Pr	-0.3284	-0.3848
	$^{152}\mathrm{Nd}$	-0.7763	-0.8493
Eu	151 Nd	-0.7427	-0.8767
	153 Nd	-0.2122	-0.2627
Gd	156 Sm	-0.5144	-0.6305
	^{158}Sm	-0.4616	-0.5361
Tb	$^{159}\mathrm{Sm}$	-0.3931	-0.4134
	$^{159}\mathrm{Eu}$	-0.7555	-0.8639

Ref. P. Denissenkov et al *MNRAS*, **503**, 3, (2021), 3913–3925

From idea to proposal to data

Let's take a closer look at our area of interest

Green - (n,γ) reaction Red - beta decay

Indirect constraints on neutron-capture reactions

Excited nucleus, decays by y-rays

Look at statistical properties when there are many levels

Nuclear level density (NLD)

- Levels per energy bin
- γ -strength function (γ SF)
 - Probability of γ emission

Need to know excitation energy and individual $\boldsymbol{\gamma}\text{-ray}$ energies

What is the β -Oslo method^[1]?

- Find the excitation energy based on the β decay
- Assume only allowed decays
- Can study more neutron rich nuclei but here there may be challenges
- Nuclear properties

After Ex-Eg

After excitation energy is found, same procedure as Oslo method:

- 1. Unfold with detector response
- 2. Extract primary γ-ray matrix
- Global minimization to find level density and γ-ray strength function
- 4. Normalize to known parameters

Use NLD and γSF to find cross section

SuN - (Summing Nal(TI))

Split into 8 segments with 3 PMTs (16" x 16")

High efficiency

Beam Total Absorption Spectrum

possible

A.Simon et. al. NIMA 703, 0168-9002 (2013)

Summing Technique

Sensitive to initial excited energies + individual gamma rays!

TAS = initial excited energies Segments = individual gamma rays

Fig. modified from C. M. Harris

Experiment setup

<u>Tape system for Active Nuclei: SuNTAN</u>

Scintillating detector for β-decay

Scintillating Plastic Optical Transport Detector - SPOT

¹⁵³Nd preliminary results

RAN SUCCESSFUL EXPERIMENT LAST SEPTEMBER!

^{152,153,154}Nd from the ANL experiment

Thanks for listening!

Thanks for listening!

H. C. Berg¹, A. Spyrou¹, D. L. Bleuel², K. Bosmpotinis¹, J. Clark³, P. DeYoung⁴, A. Doetsch¹, E. C. Good¹, B. Greaves⁵, S. Grimes⁶, C. Harris¹, V. W. Ingeberg⁷, A.-C. Larsen⁷, S. N. Liddick¹, J. E. L. Larsson⁷, S. Lyons⁸, K. Malatji⁹, M. Mogannam¹, T. Ogunbeku¹⁰, J. Owens-Fryar¹, A. L. Richard², E. Ronning¹, D. Santiago³, G. Savard³, M. K. Smith¹, A. Sweet², A. Tsantiri¹, A. V. Voinov⁶

¹ Michigan State University, East Lansing, USA, ²Lawrence Livermore National Laboratory, Livermore, USA, ³Argonne National Laboratory, Lemont, USA, ⁴Hope College, Holland, USA, ⁵University of Guelph, Guelph, Canada, ⁶Ohio University, Athens, USA, ⁷University of Oslo, Oslo, Norway, ⁸Pacific Northwest National Laboratory, Richland, USA, ⁹iThemba LABS, Cape Town, South Africa, ¹⁰Mississippi State University, Mississippi State, USA

This material is based upon work supported by the Department of Energy National Nuclear Security Administration through the Nuclear Science and Security Consortium under Award Number(s) DE-NA0003180 and/or E-NA0000979.

From P. Denissenkov

From P. Denissenkov