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List of neutron capture processes

● The r process (neutrino-wind, NS mergers, jet-SNe, etc) - Nn 
> 1020 n cm-3;

● The n process (explosive He-burning in CCSN) - 
1018 n cm-3 < Nn < few 1020 n cm-3;

● The i process (H ingestion in convective He burning 
conditions) - 1013 n cm-3 < Nn < 1016 n cm-3;

● Neutron capture triggered by the Ne22(α,n)Mg25 in massive 
AGB stars and super-AGB stars - Nn < 1014 n cm-3;

● The s process (s process in AGB stars, s process in 
massive stars and fast rotators) –  Nn < few 1012 n cm-3 .

Nn

2



  

3



  Source: NASA ADS
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N13 and/or C13 are mixed for hours-months (site dependent) in regions with typical He-burning 
temperatures  (T9 ~ 0.25-0.3 GK), together with Fe-seed rich material.

5

Main source of neutrons: C13(α,n)O16

C12+p     N13
N13         C13

C13(a,n)O16
i-process ~ 1014-1015 neutrons cm-3
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Nucleosynthesis properties of the i process: Se-Nb  



  

H-ingestion sites: 
(with the potential i-process production)

● Post AGB stars, all Z (e.g., Fujimoto+ 1977, Iben+ 1982, Miller Bertolami+ 2006, 
Herwig+ 2011, Herwig+ 2014, Woodward+ 2015)

● Low mass stars and AGB stars, low Z and Z = 0 (e.g., Hollowell+ 1990, Fujimoto+ 
2000, Suda+ 2004, Campbell & Lattanzio 2008, Cristallo+2009, Herwig+ 2014, 
Woodward+ 2015, Lugaro+ 2015, Abate+ 2016, Choplin+ 2021, Karinkuzhi+ 2021...)

● Super AGB stars, low Z (Jones+ 2016)
● Massive stars, all Z (e.g., Woosley & Weaver 1995, Limongi & Chieffi 2012, 

Pignatari+ 2015, Roederer+ 2016, Clarkson+ 2018, Banerjee+ 2018, Clarkson+ 
2021)

● Stellar binaries: iRAWDs, all Z (Denissenkov+ 2017, 2019, Côté+ 2018, Battino+ 
2020, Stephens+ 2021)
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First clear observational evidence of the i process:
the Sakurai's Object (post-AGB star after VLTP).
Not relevant for GCE but ideal benchmark
for hydrodynamics simulations and to define
relevant nuclear reaction rates.
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1D simulations of VLTPs: no i-process

As soon as some H in ingested, 
The He-burning convective zone 
Is “splitted” in two. 

C13 is made by C12+p, but C13
never reaches the bottom of the 
He-burning zone.

NO I-PROCESS!

See e.g., Herwig+1999, Miller Bertolami+ 2006
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Simulations from the Sakurai’s Object (2009)

Herwig, MP et al. 2011 ApJ

- High neutron densities: 
Nn ~ 1015 cm-3

- neutrons by the 13C(α,n)16O:
i process

How??

lo
g 1

0(
E

l/E
l o)

Atomic Number

10



  

Basics of the computational experiment

- Ming = 5.3*10-10 Msun/s
- Time-step of the stellar code reduced by a factor 
of a 1000 to resolve the nucleosynthesis

- “Split” activated at 800-1200 minutes
from the start of the H-ingestion 
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H11: approach motivation

3D simulations for ~300 minutes: 
strong variations in the H-ingestion efficiency at different positions and times 
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Results for the hydrodynamics of H ingestion from ten years ago:
(Cost of a resolved simulation of H ingestion for 20 hr star time: ~ 500K $)

+ Herwig et al. 2014, ApJL 792
+ Woodward et al. 2015, ApJ 798, 49 

- Defined the dependence of the entrainment rate 
on grid resolution of H-rich material at the top 
convection boundary and the subsequent advection 
into deeper He-rich layers. Data to inform 1D models.

+ For other hydrodynamics simulations of H ingestion (at low metallicity): Mokak et a. 2011 A&A, Stancliffe et al. 2011 ApJ

The i-process crisis:

Herwig+2014 and Woodward+2015 results for hydro 
are questioning post-AGB stars as i-process sites?
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Results for the hydrodynamics of H ingestion from ten years ago:
(Cost of a resolved simulation of H ingestion for 20 hr star time: ~ 500K $)

+ Herwig et al. 2014, ApJL 792
+ Woodward et al. 2015, ApJ 798, 49 

The i-process crisis:

- H11: to get the observed i-process pattern, 
H-ingestion rate Ming= 5.3*10-10 Msun/s. 

- W15: Ming= 4.4*10-13 Msun/s at the beginning;
- H14: Formation of instability (GOSH) where the split 
forms in 1D models (at ~ 800 minutes), which boost 
and drive Ming up to ~ 7*10-11 Msun/s before the 
simulations stop.

- The Ming is not constant!
- How does the star evolve once the GOSH 
instabilities start to take over?
- This should apply also to low-Z AGB stars? 



  

What is the Sakurai’s object?
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Sakurai’s object vs iRAWDs (Denissenkov+2019)

RAWD: Rapidly Accreting White Dwarf
Macc ~ 10-7 Msun/year

Challenging scenario: 
The Sakurai’s object is not a stellar binary.

iRAWDs: impact on GCE (Cote+2018 ApJ)



  

RAWDs
N16 N17

N16: Ming ~  7.2*10-12 Msun/s
N17: Ming up to ~ 1.08*10-10 Msun/s Most of the times there is no GOSH,

but sometimes there is also in RAWDs.
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Stephens+ 2021



  

0-order rule to navigate all this

As general indication, if the LC12+p is comparable or larger than L3He4 the stellar structure 
is strongly affected. Indicatively, in a He-burning environment in low mass stars this would 
correspond to: 

Ming ~ 5*10-11Msun/s

However, also for conditions significantly below this, we might have a GOSH (and a split
of the He-burning convective region).

(Woodward+ 2015)
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What about other stellar sources?

Super-AGB stars (Jones+2016)

Massive stars 
(Clarkson & Herwig 2021) AGB stars low-Z

(Cristallo+2009)

AGB stars low-Z
(Choplin+ 2021)
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What about other stellar sources?

Super-AGB stars (Jones+2016)

Massive stars 
(Clarkson & Herwig 2021) AGB stars low-Z

(Cristallo+2009)

AGB stars low-Z
(Choplin+ 2021)
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… hopefully, CeNAM 
will help to explore this!



  AGB stars low-Z
(Cristallo+2009)
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C13(α,n)O16 could 
be an energy source!



  

Observation of i-process signature

[Fe/H] 0

Anomalous
metal-poor 

stars

CEMP-i 
stars Barium stars

Post-AGB stars, Sakurai’s Object,
etc

Presolar 
grains

Stars in
Open Clusters
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CEMP-i (Dardelet, et al. 2014, NIC PoS 145)
One-zone calculation (1 minute in my laptop)

Among the CEMP-rs stars, several have clear 
i-process pattern, no s+r. For many candidates 
we do not have enough elements measured.  

CEMP-rs/i (low mass AGB primary): 
e.g., Cristallo+ 2009, Bisterzo et al. 2012, 
Lugaro et al. 2012, Abate et al. 2016, 
Hampel et al. 2016, Caffau+ 2019, Choplin+ 2021,
Karinkuzhi+ 2021

Additional scenarios:  iRAWDs, massive stars?



  

Without putting constraints on the i-process source(s), based on the 
nuclear reaction rates, we can say that:

1) Typical abundance signatures in CEMP-s stars cannot be 
reproduced by i-process conditions

2) The abundance pattern of r-process stars cannot be reproduced 
by the i-process conditions

3) there are CEMP-sr stars that are not consistent with an 
s+r abundance pattern, and they are reproduced by the i process.
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Is there always i-process after an H-ingestion event? NO

SiC-AB1 grains from massive stars show Mo 
and Ba with s-process signature of the preSN 
He shell. NO I-PROCESS! (and NO N-PROCESS!) 
Liu, N. et al. 2019 ApJ 2018 

Pignatari+2015 ApJL H-ingestion
+SN explosion

SIC-AB1
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Jadhav et al. 2013, ApJL
(Presolar HD graphites) 
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During SIMS measurements, was not possible to resolve 
the stable isobars 46,48Ca from the 46,48Ti peaks.
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Observing the i process signature in OCs:
Results of high Ba and low La and Ce confirmed
recently by D'Orazi+ 2017 A&A, questioned by
Reddy & Lambert 2017 ApJ. See also Maiorca+ 2012, 
Overbeek+ 2016… Baratella+2021 Under debate... 

- What source?
- Still uncertainties
about the spectroscopic
observation of Ba
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Baratella+ 2021 A&A



  

Beyond Bi, only the r-process can go?
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CEMP-rs star



  

The i process can make Actinides including Th and U, but how much?

In i-process conditions bottlenecks in the Po-At region
can be bypassed (see also Kiss & Trócsányi 2010)

@ Oleg Korobkin run (2017):
Idea confirmed using full r-process net
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@ MP NuGrid run (2016)
Similar unpublished results by Stancliffe et al. From the i-process workshop at TRIUMF (2019)



  

Kiss & Trócsányi 2010: 
Journal of Physics: Conference Series, Volume 202, Issue 1

No follow-up full publication… The 
astrophysical scenario was missing.
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‣ nuclear data 
uncertainty impact:
Kr89(n,γ)Kr90

KrRbSr
Y

31
Denissenkov et al. 2018 JPhG 45

Rate variation factor, based on uncertainty estimation.



  

Nuclear uncertainties studies (i-process)

● Bertolli+ 2013 arXiv (low Z, no site specific, N=82 zone)
● Denissenkov+ 2018 JPhG 45 (post AGBs, N=50 zone)
● McKay+ 2020 MNRAS 491 (no site specific, 32 < Z < 48)
● Goriely+ 2021 A&A 654 (low Z AGB, no Z specific)
● Denissenkov+ 2021 MNRAS 503 (iRAWDs, 56 < Z < 74)
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Summary
● There are different i-process stellar sites: we cannot expect a robust i-process pattern. 
● There is observational evidence that there may be H-ingestion without i-process (presolar 

grains from massive stars)
● Stellar modelling: a long way to go before validating all the potential i-process sites with 

multi-dimensional hydrodynamical simulations. However, it is possible to derive the 
information from 3D hydrodynamics simulations to validate 1D models (        CeNAM).

● The GCE i-process contribution could be hiding in the solar r-process (better: non-s 
process) residual. All the way up to U and Th? What about Ba in open clusters?

● What is the range of neutron exposures that can be reached by the i-process in the 
different stellar sites for different metallicities?

● Impact of nuclear uncertainties: a lot can be done for this in the next years.
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www.nugridstars.org

www.irenaweb.org

www.chetec-infra.eu

www.jinaweb.org

...

https://canpan.ca/index.html
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