18th Russbach School on Nuclear Astrophysics March, 2023 Cross-section measurement for $^{114}Cd(p, \gamma)^{115m}In$ reaction relevant to astrophysical p-process

PhD Student, Vibhuti R. Vashi, Department of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara. Supervisor: Dr. Rajnikant Makwana

March 14, 2023

Table of Contents

Introduction

- 2 Experimental Methodology
- 3 Data Analysis
- 4 Theoretical Calculations
- 5 Results & Discussion

Open questions

What is the origin of chemical elements ? How were the heavy elements made? Why stars are shining?

- E. M. Burbidge, G. R. Burbidge, W. A. Fowler, F. Hoyle and A. Cameron almost simultaneously summarized the existing knowledge of the burning processes of stars explaining the origin of the chemical elements.
- After their work, a new interdisciplinary branch of physics was born -Nuclear Astrophysics.
- The origin of almost all stable isotopes was explained assuming eight main synthesizing processes: Hydrogen burning phase, Helium burning phase (Triple α-process), α-process, e-process, s-process r-process, p-process and x-process

Introduction to *p*-process

- The nuclei burning stops at Iron (Fe) and most of the elements above iron peak are created via nucleosynthesis processes (s-process, r-process).
- The stable neutron-deficient nuclei with the mass number of $74 \le A \le 196$ (between ⁷⁴Se and ¹⁹⁶Hg) are the **p-nuclei**. The synthesis is called **p-process**.

Figure: Schematic curve of atomic abundances relative to Si=10⁶ vs atomic mass number

→ ∢ ∃

Introduction: *p*-process & *p*-nuclei

- mainly even-even nuclei
- 0.1 1 % abundance

Figure: Schematic curve of atomic abundances relative to Si=10⁶ vs atomic mass number

Introduction: *p*-process & *p*-nuclei

- The origin of *p* nuclei is challenging due to no direct evidence found in the stars and supernova remnants.
- Many assumptions are made for the p nuclei production
 - type II supernovae
 - neutrino winds of SN-II
 - type-la supernovae
 - neutron stars.
- The span of the *p*-process is roughly 2000 nuclei, forming around 20000 reaction networks.
- By considering these quests, it's a small contribution from our side to gain knowledge about the astrophysical *p* process reaction network.

Experimental Methodology

Figure: A schematic diagram of the stacked foil experiment.

Detail of Experiment

- The experiment was performed at 14-UD BARC-TIFR Pelletron facility, Mumbai-INDIA.
- A Cadmium foil was used as a target followed by the Copper degrador.
- The degradation in energy was calculated using SRIM code.
- Assuming reactions taking place in the middle of the target, the effective energy is given by

$$E_{eff} = E_p - \Delta E/2$$
 (1)

Activation Analysis

Figure: Typical γ -ray energy spectrum obtained from the interaction of p+¹¹⁴Cd.

reaction	Isotopic abundance	Threshold energy	Half-life	Prominent γ -ray energy	branching intensity
	(%)	(keV)	(hour)	(keV)	(%)
$114 Cd(p, \gamma)^{115m} In$	28.73	0.0	4.486 (4) h	336.24 (25)	45.9 (1)

Activation Analysis

 The cross-section was measured for the ¹¹⁴Cd(p, γ)^{115m}In reaction at 4.86 MeV of proton energy using an activation equation.

$$\sigma_R = \frac{A_{\gamma}\lambda(\frac{t_c}{t_r})e^{\lambda t_w}}{N\epsilon I_{\gamma}\phi(1-e^{-\lambda t_i})(1-e^{-\lambda t_c})}$$
(2)

where,

 σ_R = the reaction cross-section;

 $A\gamma =$ number of detected γ -ray count;

 $\lambda =$ decay constant of product nuclei (s⁻¹);

$$t_c = counting time (s);$$

$$t_r = real time (s);$$

 $t_w = cooling time (s);$

N = number of target atoms;

 ϕ = Proton flux incident on the target (p cm⁻² s⁻¹);

 I_{γ} = branching intensity of γ -ray;

 $\epsilon =$ efficiency of the detector for desired γ -ray.

Figure: The Coulomb penetration probability folded with the Maxwell-Boltzmann velocity distribution forms the so-called Gamow peak.

Gamow window calculation

• The effective burning energy,

 $E_0 = 0.12204(\mu Z_1^2 Z_2^2 T_9^2)^{\frac{1}{3}}$

• The effective width,

 $\Delta = 0.23682 (\mu Z_1^2 Z_2^2 T_9^5)^{\frac{1}{6}}$

Here E_0 and Δ are in MeV, T_9 is the plasma temperature in GK.

Effective energy range
 E₀ - (Δ /2) ≤ E ≤ E₀ + (Δ/2)

PhD Student, Vibhuti R. Vashi, Department C Russbach School on Nuclear Astrophysics

Data Analysis: S-factor Calculation

The nuclear reactions in stars will occur near the energies where the product of velocity distribution and the cross-section are at maximum.

S-factor

• The astrophysical S-factor was calculated using the equation below,

$$S(E) = \frac{\sigma(E)E}{e^{-2\pi\eta}}$$
(3)

 η = Sommerfeld parameter = (Z₁ Z₂ e² / $\hbar \nu$) ν = magnitude of the incident particles' relative velocity. The exponent can be approximated in numerical units by

$$2\pi\eta = 31.29 Z_1 Z_2 \sqrt{\frac{\mu}{E_{c.m.}}}$$
(4)

where, $E_{c.m.}$ is in [keV] and the reduced mass μ in [amu].

TALYS-1.95 Calculation

- The measured cross-section data were compared with theoretical predictions of TAYS-1.95.
- The results from 96 combinations are used for the cross-section comparison.

Optical model potential	Nuclear level density	γ strength function
Koning-Delaroche (KD)	Constant-temperature model (CTM)	Kopecky-Uhl
Bauge-Delaroche-Girod (BDG)	Back-shifted Fermi gas model (BSFG)	Brink and Axel
	Generalized superfluid model (GSM)	Hartree-Fock BCS (HFBCS)
	Goriely of Goriely et al.	Hartree-Fock-Bogolyubov (HFB)
	Tables of Goriely et al.	Goriely hybrid model
	T -dependent HFB, Gogny force (TDHFB)	Goriely TDHFB
		T -dependent relativistic mean field (RMF)
		Gogny D1M HFB + quasi-random-phase approximation (QRPA)

• Combination of TALYS models for $^{114}Cd(p, \gamma)^{115m}In$ reaction

- TALYS-1 : BDG (JLM) OMP + BA γ -SF + BSFG NLD
- TALYS-2 : BDG (JLM) OMP + BA γ -SF + GSM NLD
- TALYS-3 : KD OMP + KU γ -SF + GSM NLD

Results & Discussion

Figure: Comparison of the cross sections for the ¹¹⁴Cd(p, γ)^{115m}In reaction with three different HF calculations using the TALYS-1, TALYS-2, and TALYS-3 combinations and with the data retrieved from the EXFOR. The corresponding astrophysical S-factors are plotted in the right panel.

- The reaction cross sections and astrophysical S factor of ${}^{114}Cd(p, \gamma)^{115m}$ In reaction has been calculated in the astrophysical interest.
- The measured cross section value is 0.227 \pm 0.054 and S factor value is 2.4542 $\times10^6$ MeV barn for 4.86 ±2.40 MeV of proton energy.
- The work will enhance the nuclear data library of proton-induced nuclear reactions and it is a small contribution to the astrophysical *p*-process.
- Both experimental and theoretical studies are required to acquire firm insight into the driving mechanisms behind the *p*-process nucleosynthesis and restrict the parameters of the theoretical models in an energy region where there is a scarcity of experimental data, even for stable nuclei, still persists.

References

- E. M. Burbidge, G. R. Burbidge, W. A. Fowler and F. Hoyle, Rev. Mod. Phys. 29, 547 (1957).
- A. G. W. Cameron, Publ. Astron. Soc. Pac. 69, 201 (1957).
- M. Arnould and S. Goriely, Phys. Rep. **384**, 1 (2003).
- K. J. R. Rosman and P. D. P. Taylor, Pure Appl. Chem. 70, 217 (1998).
- Qtool: calculation of reaction Q-values and threshold, Los Alamos National Library. Official website: http://cdfe.sinp.msu.ru/services/calc_thr/calc_thr.html.
- NuDat 2.7 β 2011, National Nuclear Data Center, Brookhaven National Laboratory, Official website: https://www.nndc.bnl.gov/nudat2/.
- - IAEA-EXFOR Database, http://www.nds.iaea.org/exfor.
- A. J. Koning, S. Hilaire, S. Goriely, TALYS user manual, A nuclear reaction program, NRG-1755 ZG PETTEN, The Netherlands, (2017).

Research Group:

Vibhuti Vashi¹, Rajnikant Makwana^{1,2}, B. Quintana², M. H. Mehta³, B. K. Soni¹,
P. M. Prajapati², S. Mukherjee¹, R. K. Singh¹, R. Chauhan¹, M. Abhangi³, S. Vala³, N. Singh¹, G. B. Patel¹, S. V. Suryanarayana⁴, B. K. Nayak⁴, S. C. Sharma⁴, T. N. Nag⁵, Y. Kavun⁶

¹Physics Department, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390002, INDIA ²Departamento de F'ısica Fundamental, Universidad de Salamanca, Calle Espejo s/n, Salmanca - 37007, SPAIN ³Institute for Plasma Research, Gandhinagar, Gujarat-382428, INDIA ⁴Nuclear Physics Division, Bhabha atomic research centre, Mumbai-400085, INDIA ⁵Radiochemistry Division, Bhabha atomic research centre, Mumbai-400085, INDIA ⁶Kahramanmaras Sutcu Imam University, Vocational School of Health Services Dept. of Medical Imaging Tech., Kahramanmaras, TURKEY

Thank you for paying attention !!!

PhD Student, Vibhuti R. Vashi, Department CRussbach School on Nuclear Astrophysics

March 14, 2023

3 17 / 17