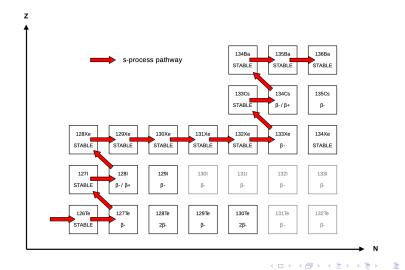
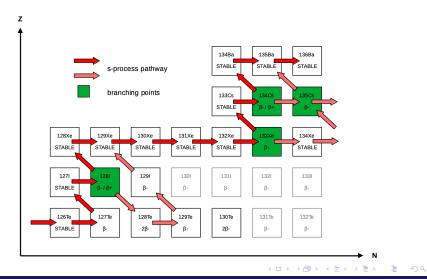
Upgrading the neutron-capture and decay rates of Monash nucleosynthesis code 18th Russbach School on Nuclear Astrophysics

Balázs Szányi PhD student, University of Szeged & Konkoly Observatory with Andrés Yagüe López, Amanda Karakas, Maria Lugaro



Upgrading the neutron-capture and decay rates of Monash nucleosynthesis code


Introduction	Results	Future plans
●0000		

s process

Introduction	Results	Future plans
00000		

Branching points

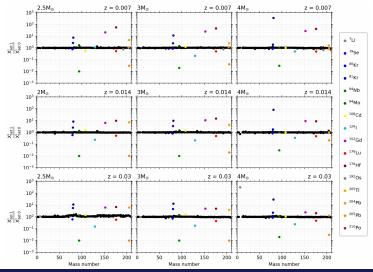
Importance of theoretical stellar nucleosynthesis calculations

- Direct comparison between predicted stellar abundances and observations
- Interpretation of chemical abundances from stellar spectra
- Interpretation of the composition of stable and radioactive isotopes in meteoric components

Introduction 000●0	Results 0000	Future plans 00
Monash NS code		

- Developed in the 1990s by John Lattanzio and Robert Cannon
- ► Monash stellar structure evolution code → Monash post-processing nucleosynthesis code
- ► 328-species nuclear network
 - including all the isotopes on the s-process path (up to Po)
- Reaction network mostly based on the JINA REACLIB database (Set0)

Constant radioactive decay and electron capture rates

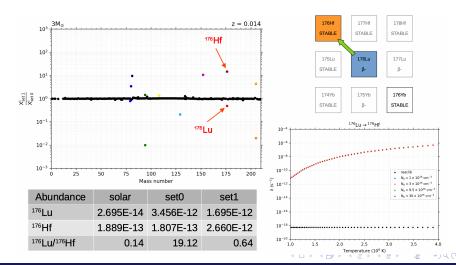

Introduction 0000●	Results 0000	Future plans

Monash NS code

- Because of the operation of the branching points, the temperature and density-dependent decay rates are essential for the accurate study of the s-process in AGB stars
- New input physics in the code:
 - Temperature and density-dependent radioactive decay and electron captures rates from NETGEN database (Set1, 113 reactions)
 - Upgraded neutron-capture network with re-evaluated experimental MACS from ASTRAL database (Set2, 94 reactions)

Introduction	Results	Future plans
	0000	

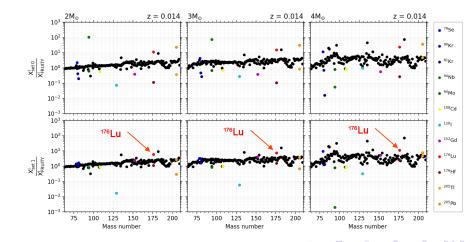
Set1 vs Set0



Upgrading the neutron-capture and decay rates of Monash nucleosynthesis code

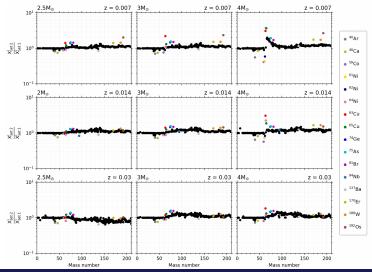
≣ ∽ ۹.0 Balázs Szányi

Introduction	Results	Future plans
	0000	


Set1 vs Set0

Upgrading the neutron-capture and decay rates of Monash nucleosynthesis code

Introduction	Results	Future plans
	0000	


Set1 and Set0 vs FRUITY

Upgrading the neutron-capture and decay rates of Monash nucleosynthesis code

Introduction	Results	Future plans
	0000	

Set2 vs Set1

Upgrading the neutron-capture and decay rates of Monash nucleosynthesis code

≣ ∽ ۹.0 Balázs Szányi

Introduction 00000	Results 0000	Future plans ●0
Future plans		

- Interpreting the results of Set2
- Comparing the predictions of the upgraded code with stardust grains measurements
- Continuous updating of the network based on new research results

Thank you for your attention!

Upgrading the neutron-capture and decay rates of Monash nucleosynthesis code