

18th Russbach School on Nuclear Astrophysics

12–18 Mar 2023 Rußbach am Paß Gschütt

Introduction to Nuclear Physics in Astrophysics

Aurora Tumino

Outline of my lecture

- Nuclear physics in the abundance curve
- Features of thermonuclear reactions
- Experimental approaches
- Physics cases

Nuclear Astrophysics → Rich & Diverse Interdisciplinary Field bringing together

- Modelers
- Observers
- Nuclear physicists: Experimentalists as well as Theorists
- ... from the seminal **B²FH** review paper of 1957,

the basis of the modern nuclear astrophysics

this work has been considered as the greatest gift of astrophysics to modern civilization

"for his theoretical and experimental studies of the nuclear reactions of importance in the formation of the chemical elements in the universe"

Nuclear reactions responsible for both ENERGY PRODUCTION and CREATION OF ELEMENTS in 4 ways/environments:

- Cosmological nucleosynthesis: creation in the Big Bang
- Stellar nucleosynthesis: synthesis of elements by fusion in stars
- Explosive nucleosynthesis: synthesis of elements by neutron and proton capture reactions in supernovae
- Galactic nucleosynthesis: synthesis of elements by cosmic ray spallation reactions

REVIEWS OF MODERN PHYSICS

VOLUME 29, NUMBER 4

Остовяя, 1957

Synthesis of the Elements in Stars*

E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE

The first complete review of nuclear reactions explaining: H and He quiescent and hot burning, and of the nucleosynthesis beyond Fe.

Where the elements are made...we WISH we knew that!

Here is the "current belief" in terms of nucleosynthetic source of elements in the Solar System

Each element in this periodic table is color-coded by the relative contribution of nucleosynthesis sources

In <u>astronomy</u>, a "metal" is any element other than hydrogen or helium, the only elements that were produced in significant quantities in the Big Bang. Thus, the <u>metallicity</u> of a <u>galaxy</u> or other object is an indication of stellar activity after the Big Bang.

Where's the Nuclear Physics?

H burning \rightarrow conversion of H to He He burning \rightarrow conversion of He to C, O ... C, O and Ne burning \rightarrow production of A: 16 to 28 Si burning \rightarrow production of A: 28 to 60 s-, r- and p-processes \rightarrow production of A>60 Li,Be, and B from cosmic rays

- Big Bang Nucleosynthesis does not go beyond Li due to missing stable nuclei of mass number 5 or 8
- Odd-even staggering of abundances (Oddo-Harkins rule)
- Larger alpha-nuclei abundance, particularly those connected to particular values of Z and N (so called magic numbers, 2, 8, 20, 28, 50 ...) which are significant with regard to the structure of nuclei ... at least up to Fe
- Broad peak around Fe

to be determined from experiments and/or theoretical considerations

a) velocity distribution

interacting nuclei in plasma are in thermal equilibrium at temperature T
also assume non-degenerate and non-relativistic plasma ⇒ Maxwell-Boltzmann velocity distribution

b) cross section

no nuclear theory available to determine reaction cross section a priori and can vary by orders of magnitude, depending on the interaction

cross section depends sensitively on:

- The properties of the nuclei involved
- the reaction mechanism

examples:		1 barn = 10 ⁻²⁴ cm ² = 100 fm ²	
Reaction	Force	σ (barn)	E _{proj} (MeV)
¹⁵ N(p,α) ¹² C	strong	0.5	2.0
³ He(α,γ) ⁷ Be	electromagnetic	10 ⁻⁶	2.0
p(p,e⁺v)d	weak	10 ⁻²⁰	2.0

stars = cooking pots of the Universe

in practice, need **experiments** AND **theory** to determine stellar reaction rates

Reaction mechanisms in short

Nuclear reactions between charged particles

Gamow energy:

$E_0 = f(Z_1, Z_2, T)$

Ň

varies depending on <u>reaction</u> and/or <u>temperature</u>

Examples: $T \sim 15 \times 10^6 \text{ K}$ (T₆ = 15)

reaction	Coulomb barrier (MeV)	E ₀ (keV)	area under Gamow peak ~ <σv>
p + p	0.5	5.9	7.0x10 ⁻⁶
α + ¹² C	2.242	56	5.9x10 ⁻⁵⁶
¹⁶ O + ¹⁶ O	10.349	237	2.5x10 ⁻²³⁷

 $kT \ll E_0 \ll E_{coul}$

 10^{-18} barn < σ < 10^{-9} barn major experimental challenges

STRONG sensitivity

to Coulomb barrier

⇒ separate stages:

H-burning He-burning C/O-burning ...

neutron-capture cross sections can be measured <u>directly</u> at the relevant energies

A few details on cross section expressions

Cross section expression for low-energy non-resonant reactions

 $\sigma = (weak energy dependence) \times (strong energy dependence)$

need expression for P_I(E)

factors affecting transmission probability:

- > centrifugal barrier (both for charged particles and neutrons)
- Coulomb barrier (for charged particles only)

$$V_{\ell} = \frac{\ell(\ell+1)\hbar^2}{2\mu r^2}$$

Cross section expression for low-energy resonant reactions: single isolated resonance

resonant cross section given by **Breit-Wigner expression**

partial widths are NOT constant but energy dependent!

$$\Gamma_{1} = \frac{2h}{R}P_{1}(E_{1})\theta_{1}^{2}$$

 θ_{ℓ} = "reduced width" (contains nuclear physics info) P_{ gives strong energy dependence

PROTON ENERGY Ep (lab) [MeV]

Corresponding reaction rate for resonant processes

$$\langle \sigma v \rangle = \int \sigma(v) \phi(v) v dv = \int \sigma(E) \exp(-E/kT) E dE$$

here Breit-Wigner cross section
$$\sigma(E) = \pi D^2 \frac{2J+1}{(2J+1)(2J_T+1)} \frac{1}{(E-E_T)^2}$$

integrate over appropriate energy region

E ~ kT	for neutron induced reactions
E ~ Gamow window	for charged particle reactions

if compound nucleus has an excited state (or its wing) in this energy range

 \Rightarrow RESONANT contribution to reaction rate (if allowed by selection rules)

typically:

- resonant contribution dominates reaction rate
- > reaction rate critically depends on resonant state properties

reaction rate for:

narrow resonances

 $\Gamma_{\!\!1}\Gamma_{\!\!2}$

broad resonances/sub-threshold states

Narrow resonance case

 $\Gamma \leq E_{R}$

reaction rate for a single narrow resonance

resonance strength

(= integrated cross section over resonant region)

 \succ resonance must be **near** relevant energy range ΔE_0 to contribute to stellar rate

 $\omega \gamma = \frac{2J+1}{(2J_1+1)(2J_{\tau}+1)} \frac{\Gamma_1 \Gamma_2}{\Gamma}$

- > MB distribution assumed **constant** over resonance region
- > partial widths also **constant**, i.e. $\Gamma_i(E) \cong \Gamma_i(E_R)$

exponential dependence on energy means:

- \succ rate strongly dominated by <u>low-energy resonances</u> ($E_R \rightarrow kT$) if any
- \succ small uncertainties in E_R (even a few keV) imply large uncertainties in reaction rate

 \geq partial widths Γ_i spin J \geq energy E_R

$$\begin{split} & \Gamma_1 << \Gamma_2 \longrightarrow \Gamma \approx \Gamma_2 \longrightarrow \frac{\Gamma_1 \Gamma_2}{\Gamma} \approx \Gamma_1 \\ & \Gamma_2 << \Gamma_1 \longrightarrow \Gamma \approx \Gamma_1 \longrightarrow \frac{\Gamma_1 \Gamma_2}{\Gamma} \approx \Gamma_2 \end{split}$$

reaction rate is determined by the smallest width!

note: for many unstable nuclei most of these parameters are **UNKNOWN!**

2

 $h^{2}(\omega\gamma)_{R} \exp$

(Γ_i values at resonant energies)

often
$$\Gamma = \Gamma_1 + \Gamma_2$$

 2π

 $\langle \sigma V \rangle_{12} =$

resonant strength dominated by particle width

 $ωγ = ωΓ_a$ (typically for $E_R \le 0.5$ MeV)

- strong energy dependence through Coulomb barrier penetration
- only resonances in Gamow window are relevant to reaction rate

resonant strength dominated by gamma width

 $\omega \gamma = \omega \Gamma_{\gamma}$ (typically for E_R > 0.5 MeV)

- Iowest energies dominate rate because of exp(-E_R/kT) term
- <u>no Gamow peak exists!</u>
- effect most important at high temperatures

Broad resonance case

Breit-Wigner formula

energy dependence of partial and total widths

broad resonance located within Gamow peak dominates rate

broad resonance located outside

low-energy wing dominates rate

broad sub-threshold resonance

Gamow peak

The product of Maxwell–Boltzmann distribution and cross section is now a complicated function of energy (lower solid line) and can no longer be integrated analytically. Instead, the reaction rates have to be calculated numerically.

N.B. overlapping broad resonances of same $J^{\pi} \rightarrow$ interference effects

To summarize ... stellar reaction rates include contributions from

- <u>direct transitions</u> to the various bound states
- > all <u>narrow resonances</u> in the relevant energy window
- broad resonances (tails) e.g. from higher lying resonances
- any interference term

Features - General Overview

Quiescent burning stages

- $T \sim 10^6 10^8 \text{ K} \implies \text{ E}_0 \sim 10 \text{ keV} 1 \text{ MeV} \iff \text{ E}_{coul}$
- \Rightarrow 10⁻¹⁸ barn < σ < 10⁻⁹ barn
- \Rightarrow average interaction time $\tau \sim \langle \sigma v \rangle^{-1} \sim 10^9 \text{ y}$
- unstable species **DO NOT** play significant role

Explosive burning stages

- $T > 10^8 K \implies E_0 \sim MeVs \leq E_{coul}$
- \Rightarrow 10⁻⁶ barn < σ < 10⁻³ barn
- \Rightarrow Extrapolation may not be needed
- \Rightarrow average interaction time $\tau \sim \langle \sigma v \rangle^{-1} \sim$ seconds
- \Rightarrow <u>unstable</u> species <u>DO</u> play significant role

How to approach experimentally

Main Issues

- poor signal-to-noise ratio

- unknown nuclear properties
- low beam intensities (several o.d.m. lower than for stable beams)

Requirements Extrapolation procedure (?)

long measurements-ultra pure targets-high beam intensities-high detection efficiency

RIBs production and acceleration large area detectors high detection efficiency Recoil separators Storage rings

•••

•••

Experimental approach: extrapolation

measure $\sigma(E)$ over as wide a range as possible, then <u>extrapolate</u> down to $E_0!$

Experimental approach: alternative solutions

- Underground experiments to reduce (cosmic) background: <u>LUNA (LNGS Italy), Felsenkeller (Germany), CASPAR (USA), JUNA</u> (<u>China</u>), particularly suited to perform gamma spectroscopy

- Surface experiments: inverse kinematics; coincidence experiments (g-g, g-particle, ...); recoil separators, separate reaction products from unreacted beam and disperse them according to their mass-to-charge-state ratio; storage rings: to overcome beam intensity limitations. The beam is recirculated many times and therefore has repeated chances to interact with the target; ...

- Use indirect methods: Coulomb Dissociation (CD), Asymptotic Normalization Coefficients (ANC), Trojan Horse Method (THM)

These topics will be the subject of several lectures in the next days ...