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First stellar evolution models? 

Back to the early 20th century with the work of 
scientists such as Sir Arthur Eddington

In the picture: Einstein, Ehrenfest & De Sitter; 
Eddington & Lorentz. 
Location: office of W. de Sitter in Leiden
Date: 26 Sept. 1923
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B2FH – Margaret and Geoffrey Burbidge, Fowler and Hoyle – admire a steam engine presented to Fowler on his
60th birthday in 1971. Image: Donald D Clayton.



STELLAR STRUCTURE



HYDROSTATIC EQUILIBRIUM
The pressure gradient force pushing outward from the center exactly balances the gravitational force pulling
inward towards the center.



MASS CONSERVATION
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4 1 Coordinates, Mass Distribution, and Gravitational Field in Spherical Stars

Fig. 1.1 The variation of m
with r at a fixed moment
t D t0. The quantities dm and
dr are connected by (1.2)

Since it is preferable to describe the mass distribution in the star by m.r; t/
(instead of %), (1.2) will be taken as the first of our basic equations in the Eulerian
description.

The last term in (1.1) gives the (spherically symmetric) mass flow out of the
sphere of (constant) radius r due to a radial velocity v in the outward direction in
the time interval dt:
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The partial derivatives in the last two equations indicate as usual that the other
independent variable .t or r) is held constant.

Differentiating (1.2) with respect to t and (1.3) with respect to r and equating the
two resulting expressions gives
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This is the well-known continuity equation of hydrodynamics, @%=@t D !r " .%v/,
for the special case of spherical symmetry.

1.2 Lagrangian Description

It will turn out that, in the spherically symmetric case, it is often more useful to
take a Lagrangian coordinate instead of r , i.e. one which is connected to the mass
elements. The spatial coordinate of a given mass element then does not vary in time.
We choose for this coordinate the above defined m: to any mass element, the value



HYDROSTATIC EQUILIBRIUM
The pressure gradient force pushing outward from the center of the fluid exactly balances the gravitational
force pulling inward towards the center.
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ENERGY TRANSPORT

Radiative zone

Convective zone



ENERGY CONSERVATION
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STELLAR EQUATIONS
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STELLAR EQUATIONS
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Mass conservation

Energy conservation
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Equation of state

Opacities

Nuclear cross sections

Book: Kippenhahn, Weigert, Weiss, Stellar structure and 
evolution, A&A Library
Book: Bohm-Vitense, Introduction to stellar astrophysics,
Cambridge University Press. 
, 
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H-BURNING IN STARS:

The p-p chain
Q=26.5 MeV



H-BURNING IN STARS:

The p-p chain
Q=26.5 MeV
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H-BURNING IN STARS:

The CNO cycle
Q=25 MeV
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H-BURNING IN STARS:

The CNO cycle
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H-BURNING IN STARS:



<1.2Msun

>1.2Msun



NGC 1851



NGC 1851

T>10^8K





Low-intermediate mass stars:
1 ≤ M/Msun ≤ 8

Bright stars:  
Lmax =104 -105 Lsun

Cool stars: 
Teff = 4000-2000 K

High mass loss rates:
Mass loss rates up to 10-4 Msun/yr

AGB STARS



AGB STARS



credits: MoCA-SINs

AGB STARS



Third dredge-up

C/O>1 ---> carbon stars

time
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SURFACE CHEMISTRY
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HOT BOTTOM BURNING

time
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