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Where do the elements come from?

“We are made

of star stuff.”
Carl Sagan

“It 1s the stars,

The stars above us,

govern our conditions” A4 ~ s
William Shakespeare



Aim of this introductory lecture

e Acquire a qualitative overview, a frameworKk,
of the astrophysics you need to know

 Familiarize yourself with relevant astro-
physical concepts and nomenclature

* Get inspired to read on...

Other lectures later today/this week will give much more
details on individual nuclear processes, astronomical
messengers and astrophysical sources. And the nuclear part

of the story...



Further reading

Burbidge, Burbidge, Fowler & Hoyle (1953), Synthesis of the
Elements in Stars (B2FH)

Asplund (2005), New light on stellar abundance analyses:
Departures from LTE and Homogeneity

Kappeler et al. (2011), The s process: Nuclear physics, stellar
models, and observations

Johnson et al. (2020), The origin of the elements: a century of
progress

Cowan et al. (2021), Origin of the heaviest elements: The rapid
neutron-capture process

Diehl et al. (2022), Cosmic nucleosynthesis: A multi-messenger
challenge

+ + + (talk to the Russbach lecturers about their favourite review paper!)



What is the state of the art in CNO related nuclear astrophysics?

December 2022

SNAQs lectures

? &

Accurate abundances of chemical elements in stars: why and how?

May 2022

on indico

Why is attracting high school students to nuclear astrophysics a
win-win for everyone?

April 2022

x

How to model a star in your laptop?

February 2022

What is the link bet dioactive nuclei and astroph

January 2022

':":’Cf

Does Nuclear Astrophysics probe fundamental physics?

December 2021

How to interpret stellar spectra?

November 2021

on indico

Kok

S
0

How to study stars from underground laboratories and deep-sea
samples?

October 2021

What does nuclear physics do for astrophysics?

June 2021

What do we need to know about nuclear astrophysics?

February 2021

How can we query nature to determine nuclear inputs in the
cosmos?

May 2021

How to get from starlight to stellar abundances?

April 2021

on indico

How do neutron star gers impact r

March 2021

In particular, SNAQs 1, 3, 7 and 12.
Check them out (htt




The NAP playground
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Features to be explained:

* very high abundances of H and He

» very low abundances of Li, Be and B

* high abundances of C, O, Ne, Mg Si, S and Ca
* high abundances in the Fe/Ni peak

« strong deline with A spanning > 12 orders o
» (Ge/Sr, Xe/Ba & Pt/Pb double peaks i}

10°1]
102 L
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solar abundances (Si
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The NAP playground
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IUPAC

A three-dimensional periodic table
showing the various isotopes of the
elements along the third axis.
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Where to collect elemental data

Earth (geophysical processing, e.g. deuteration of oceanic water, ...)
Moon & Mars (surface bombarded by cosmic rays over 4.5 Gyr)

meteorites and cosmic dust (detailed isotopic information!;
volatile elements depleted; see talks by Reto and Jenny)

Sun (photosphere, solar wind; solar modelling problem; a typical star?)



Where to collect elemental data

Earth (geophysical processing, e.g. deuteration of oceanic water, ...)
Moon & Mars (surface bombarded by cosmic rays over 4.5 Gyr)

meteorites and cosmic dust (detailed isotopic information!;
volatile elements depleted; see talks by Reto and Jenny)

Sun (photosphere, solar wind; solar modelling problem; a typical star?)

interstellar medium / HII regions (isotopic information!;
also gamma-ray lines from short-lived species like 26Al)

starlight (access to lots of elements!; mixing processes alter the
composition of certain elements as stars evolve)

stellar eXIDIOSiOl‘lS (supernova/kilonova lightcurves or “nebular”
observations, e€.g. SN1987A; hard to model, but progress is being made)



[. Big Bang expansion
and
Big Bang Nucleosynthesis

We can observationally constrain the very first phase of
element production just minutes after t=0. Amazing!



Cosmic time line

Cosmic microwave background

Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
380,000 yrs. Galaxies, Planets, etc.

Inflation

Quantum
Fluctuations

1st Stars
about 400 million yrs.

Big Bang Expansion

|
\ )

13.7 billion years



Nucleosynthesis: from quarks to nuclei

Seconds to minutes after the Big Bang, the Universum has
the right temperature (= 10° K) to act as a as fusion reactor.

(ot,n) (o)

Big Bang
Nucleosynthesis
network



Following BBN

The expansion continues
and the neutrons decay,
quenching the fusion
after a few minutes.

According computations
predict highly accurate
abundance ratios of
hydrogen, helium and
lithium essentially from
temp erature (kelvins) first principles.

We can observe D/H, 4He/H and 7Li/H in little evolved objects.
More on this tomorrow night. Stay put!



Summary BBN

The Big Bang expansion theory can explain
the evolution of the cosmos with two big

unknown quantities: (Qpy,and (2,.

The strongest evidence for Dark Matter stems from
detailed observations of CMB anisotropies, but
other independent observations fit the same picture.

During BBN, the first nuclei were produced:
75% H, 25% 4He and a tad of D, 3He and 7Li.



NB

Standard BBN in a homogeneous and
isotropic Universe uniquely defines the
nuclear (“chemical”) boundary condition
for 14 Gyr of chemical evolution.

The theory of how stars produce ~all remaining elements of

the periodic table was laid out in the seminal paper by
Burbidge, Burbidge, Fowler & Hoyle (1953, B2FH).



II. Stars

the main source of cosmic abundance
measurements and elements!

There is a natural focus on low-mass stars as they are
long-lived and have rich atomic and molecular spectra.
High-mass stars can constrain the present-day chemical

evolution of the MW and extragalactic systems.



Observables: stellar photons
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Photons mainly originate
from the stellar surface,

a fairly thin (a few hundred
km in the case of the sun)
layer which we call the
stellar atmosphere.

Unless there is significant
exchange between the
stellar interior and the
atmosphere, the latter is a
decent representation of
the stellar material at birth.
Mostly the case (with
notable exceptions; more
on this tomorrow). This is
the foundation of Galactic
archaeology.



What is a star?

1930s: stars are powered by nuclear fusion
(Bethe, Weizsacker, following Eddington)

Thus, a star is a self-gravitating gas (plasma)
sphere with nuclear fusion as its energy source.

Mass range: 80 Mpicer (0.08 My)< M < ~150 M

Right mass, but not yet fusing: PMS stars
Not fusing anymore: stellar remnant (WD, NS, BH)



Main sequence phase

All stars spend 80-90% of their lives on the
main sequence (MS), i.e. for millions to billions
of years depending on stellar mass.

Whilst on the MS, stars burn H to He in their cores
(high-mass stars via CNO cycles).

How do we knouw this for a fact?

Main product: He (but also some N and 13C).

Stars move away from the MS once hydrogen in their core is
exhausted (“turnoff point”, TOP). The TOP is an important
age indicator for stellar aggregates like clusters.



Surface temperatures, luminosities, radii

A Hertzsprung-Russell
diagram shows the
fundamental plane of stars

in “observable” quantities:
M vs BP—RP or L vs T.

The main sequence (MS) is
inclined with respect to loci
of constant radius: upper-
MS stars (OB-type) are
much more luminous,
because they are hotter and
larger.

White dwarfs (WD) are
stellar remnants, not stars.

surface temperature (Kelvin)




The zoo of stars
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© D. Jarvis




Nuclear energy release

Various nuclear processes can power stars. All stars
either run the p-p chains or the CNO cycles. Stars more
massive that the Sun experience more advanced
burning stages.

We approximate q (and the opacity K) as power laws in
poand T:

main
m n product(s)
x oMTn p—p|l 4 He Cycles switch

q :O CNO | 1 20 He on instantly as

,, they are ve
energy lfeleased Ja 2 40 C O T_Sgnsitive!m
per unit mass C 1 30 O.NeNaMg

O 1 45 Mgspsi




The solar spectrum

KITT PEAK SOLAR FLUX ATLAS (KURUCZ, FURENLID, BRAULT, AND TESTERMAN 1984)
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Relative inlensity —

| Spectra of different stars
~—— Surface temperature (K)
50,000 25,000 10,000 8,000 6,000 5,000 4,000 3,000
He | | | | I | | |
M W H
FO B
/
""l l 5 |
05 BO A0 F0O GO0 KO MO M7
Spectral type
Spectra of low-mass stars (GKM) allow to probe
Wo some 1sotopic ratios, e.g. 242526Mg (Yong et al. 2003)
Ggfl | | |
350 450 550 650 a0

Wavelength {nm) —» © CliffsNotes: Spectral Types



Where stars have their spectral lines

Metal-rich stars (like the sun) have so many lines that observations in
the blue or UV spectral region can be difficult.

Metal-poor stars have significantly reduced line densities which makes
observations in the blue/UV a necessity, especially for rare species.

For more details on this, see Camilla's talk.
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Modelling stellar spectra

We can observe elements
from H to U. Modelling is
mature, but classical (1970s+)
assumptions (1D, LTE) can
lead to biased results, in
particular for metal-poor stars
the atmospheres of which are
do not resemble 1D models
and high UV fluxes drive line
formation away from LTE.

J0954f5246 @‘R=6O,OO(I) and SNB~100
With NLTE (3D) modelling,
accuracies of 0.1 dex (25%) in

NN
[X/H] are now achievable / \/ S \_/ /

(given good spectral data). 38502 38504 38506 33508  3360.0

)

Wavelength (A)

See Asplund (2005) and SNAQs talks by Andy Gallagher (AIP) & Anish Amarsi (UU)!

Normalized flux

T o S 3

Residual (%)
Holmbeck et al. (2018)




Good spectra + good models = good results
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Get the nomenclature right!

mass fractions: let X, Y, Z denote the mass-weighted abundances
of H, He and all other elements ("metals”), respectively, normalized
ounity X+ Y +Z =1).

example: X, = 0.744, Y, = 0.242, Z, = 0.014

(Asplund, Amarsi & Grevesse 2021)

The 12 scale: log (M) = log (ny/ ny) + 12
example: log £(0), = 8.7 dex, 1.e., oxygen, the most
abundant metal, is 2000 times less abundant than H in
the Sun (Asplund, Amarsi & Grevesse 2021)

Square-bracket scale: [M/H] = log (ny/ ny)« —log (ny/ ny)g

example: [Fe/H]ugo107-5240 = —5.3 dex, 1.e., this star has
an iron abundance a factor of 200 000 below the Sun
(Christlieb et al. 2002)



The Milky Way

aaiz Halo
T (spheroidal component,
home of globular clusters,
GSE and MW satellites)

- l o ZTQEL £ . v
Galactic ¥ o v~ “f?“d___ T e —————  disk(s)

1

Magellanic
Clouds

© Gaia DPAC

Star density map, assembled by Gaia For GSE, Gaia's main MW-evolution

discovery, see Helmi et al. (2018).




The role of environment

Open clusters: youngish (0-6 Gyr) and fairly simple.
Excellent objects to test one's analysis methods

and study stellar evolution. There are many details
left to understand (dredge-up, role of rotation...)!

© Greg Noel

Globular clusters: very old, very complex, unexplained!
See e.g. Milone et al. (2017) for chromosome-map analysis.
HRD construction: https://youtu.be/HWQOslu4S5e0Q

MW satellite galaxies, e.g. dSph galaxies:
remnants of the hierarchical structure formation of the MW.
Some have totally unique abundance patterns
constraining individual enrichment events
(see e.g. Jietal. (2016) on Reticulum II).
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Elements potentially detected in spectroscopic surveys of the Milky Way

He

Jofré et al. (2019)

And the near future will see surveys with tens of millions

of spectra: WEAVE (N) and 4MOST (S). Plus Gaia-RVS!

See Johannes' talk on a widely used spectroscopic tool (pySME).



The holy grail: Population III

The very first generation of stars, Pop III, only consisting of
H and He, is to date unobserved.

Presumably exclusively high-mass (cooling primordial gas is
difficult!) and thus short-lived.

Maybe not, we may have to sample the MW halo in greater depth. The
metallicity distribution function drops very steeply (factor 100 for factor
of 10 in metal content).

Pop III stars enriched extreme Pop II with the first metals
which offers an indirect way of studying Pop III SNe.

For the most extreme example, see Keller et al. (2014): [Fe/H] < -7.5
and an abundance pattern anything but solar!

See also Welch et al. (2022) for a highly magnified massive star (binary)
atz ~ 6. Wow!



Summary Stars

We have seen that there are all kinds of stars.
They differ drastically in shapes and sizes (M, R).
Mass is a star’s most fundamental parameter.

All stars fuse nuclei in different burning stages.
All initially fuse H to He in either the pp chains
or the CNO cycles. Late stages of evolution can
produce rather heavy elements (Sect. III).

So how are the elements beyond
the iron peak created?



III. Stellar endgames

Dying low-mass stars produce s-process elements with
peaks at the neutron magic numbers, as well as lithium.

SNe type Il (core-collapse of massive stars) produce
a elements (O + n - 4He, up to Ca) and kilonovae
(merging neutron stars) r-process elements.

Some explosions produce nucleids on the proton-rich
side of the valley of stability through a p process.
Processes involving neutrinos are also expected to
contribute (v-process/vp-process). ++ +

Finally, SNe type Ia (thermonuclear deflagrations of
white dwarfs) contribute significantly to the iron peak.



Neutron-capture processes in AGB stars

Low- and intermediate-mass evolved (asymptotic giant branch, AGB)
stars manage to create neutron-rich condition in their interiors which
lead to the successive build-up of heavier elements. This process is
referred to as the s (slow neutron capture) process, as it proceeds
close to the valley of stability in competition with B decays.

The smoking gun of this process is the detection of Tc (Merrill 1952)
in the spectra of cool AGB stars: this element has no stable isotope,
1.e. it must have been produced in the past few Myr.

See Sergio's and Marco's talk tomorrow.



The demise of low-mass stars

From Planetary
Nebulae (PNe)
to White Dwarfs
(WDs).

WDs in binaries
can go SN!




Stars with M = 8 M, or more

These stars occupy the same L regime as AGB stars, but
are significantly hotter. As radiation pressure goes with
the fourth power of T, radiation-driven mass loss is
strong in these stars and will significantly affect their
evolution (prime example: Wolf-Rayet stars).

High-mass stars move more or less horizontally across
the HRD, at constant L. They may explode either in the
blue or the red part, as blue or red supergiants. The SN
(type II) explosion was long believed to be the site of the
r (rapid neutron-capture) process producing =half of the

stable nuclei beyond the iron peak, plus U and Th.
Example: Eu(ropium) in the Solar System is 94% r (Arlandini et al. 1999)



SN 1987A

The supernova (type IIp) we have been able to
follow in greatest detail. The progenitor was an
inconspicuous B3 supergiant.
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...plus some 20 vs detected!



SN yields

The elemental output of a star. Depends critically on the
mass of the SN progenitor (roughly 8 M, <M < 50 M,)

and the physical modelling. Many free parameters (mixing,
mass cut, fallback, v physics), nonetheless some successes:
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Is the r process universal?
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Gabriel's talk. How can it be universal?



Neutron star mergers: finally confirmed

GW170817 plus GRB170817A (~1.7 s later) plus optical

follow-up

A confirmed source of
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How to make a SN type Ia
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Two scenarios for SN Ia

My = 0.5 M, (Childress et al. 2015)

Merger of two white dwarfs
and/or

mass accretion from a non-
WD companion

leads to

M WD > M Chandrasekhar

which results in a
detonation/deflagration
(E = 105! erg). Takes time!

In absolute terms, a Type Ia
SN yields less O, Mg and Fe,
compared to a SN Type II.
In relative terms, it yields
more Fe than O and Mg.



IV. Cosmic rays

B2FH did not manage to explain the origin of
the light elements ¢7Li, °Be and 1911B,
They assigned an unknown (X) process to it.
Now we know that these isoptopes can be
produced in interactions of cosmic rays with
the interstellar medium (ISM).
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Arriving cosmic rays

HHeBe C O NeMgSi § Ar Ca Ti Cr Fe Ni Zn Ge

Li, Be and B are relatively
fragile nuclei which generally
speaking do not survive the

conditions of stellar interiors
(T > 10¢ K).

As is evident from the cosmic rays arriving at earth,
LiBeB nuclei can be produced through spallation (and
fusion) reactions with nuclel in the interstellar medium.
These reactions contribute to the gradual build-up of 7Li
in the MW (above [Fe/H]~-1). Be and B are less well
studied in Galactic stars (hard-to-observe UV lines).



Cosmic Matter Cycle
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The Solar neighbourhood (25 pc)
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The Sun (") is a normal, albeit fairly high-mass, thin-disk star.

No bulge and very few halo stars (not shown here) within 25 pc.



The Solar neighbourhood (25 pc)
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This is the most fundamental distinction between Galactic stellar

populations (Tinsley 1979). It comes down to enrichment
timescales.
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Summary periodic evolution table
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