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Hydrazine (N,H,) is the most commonly used propellant for in-orbit spacecraft propulsion. However, utilization of hydrazine in space missions has challenges associated with health, environment and safety Ammonium Dinitramide

Motivation

risks. Energetic ionic liquids (EILs) such as ammonium dinitramide (ADN) present themselves as environmentally friendly alternative fuels to hydrazine. Catalytic technologies developed for ADN based
propulsion systems should be resilient to high temperatures and should also be stable enough to be used in many consecutive cycles without a significant loss of activity. The conventional catalyst used for

(ADN) "’ 666
hydrazine decomposition is ~30 wt.% Ir/Al,O,. The major drawbacks of this catalytic system are Ir sintering and particle size growth associated with thermal aging, as well as loss of surface area at elevated N\NOZ\Z—

temperatures. In the current work, influence of two different catalytic promoters (i.e., La or Si incorporated into the alumina support material) on the catalytic performance of Ir active sites in anaerobic ADN
decomposition were investigated [1]. Performance measurements were done via custom-design micro propulsion batch reactor. Structural characterization of the catalysts were carried out via XANES,

EXAFS, in-situ FTIR, CO Chemisorption, XRF, TPD, XRD, TEM and BET analysis techniques. Our findings revealed that 5Ir/Al,O4 and 5Ir/La-Al,O, catalysts favorably lowered the onset temperature of
the ADN decomposition reaction, whereas 51r/Si-Al,O, boosted the pressure generation during the reaction. The fundamental structure-functionality relationships unraveled in the current work may allow
design of novel catalytic systems for aerospace monopropellant propulsion systems with higher performance by simultaneous exploitation of Ir active sites with different electronic properties.

5 wt.% Ir/Al,O, and 5 wt.% Ir/X-Al,O, catalysts were synthesized using incipient to wetness impregnation method. Ir sites were incorporated on the support materials in two successive impregnation cycles.

Experimental

After initial impregnation and drying steps (60 °C in air for 8 h), two different preparation protocols were carried out;

First protocol: i) catalysts were calcined in air at 400 °C for 3 h, ii) impregnated with a second loading of 2.5 wt.% Ir, dried at 60 °C in air for 8 h, and calcined in air at 400 °C for 3 h, and iii) finally reduced

at 500 °C for 2 h under 100 ml/min 5% H.,/Ar flow. Catalysts synthesized using this first protocol are designated in the text as “CCR”.
Second protocol: i) impregnated catalysts were reduced at 500 °C for 2 h under 100 mi/min 5% H.,/Ar flow, ii) impregnated with a second loading of 2.5 wt.% Ir, dried at 60 °C in air for 8 h, and reduced at

°C for 2 h under 100 mi/min 5% H,/Ar flow. Catalysts synthesized using this second protocol are designated in the text as “RR” (e.g., 5Ir/Si-Al,O; RR).

[1] M. Kurt, Z. Kap, S. Senol, K. E. Ercan, A. T. Sika-Nartey, Y. Kocak, A. Koc, H. Esiyok, B. S. Caglayan, A. E. Aksoylu, E. Ozensoy, Applied Catalysis A: General, 632,118500, 2022.
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Ideas for Helmholtz-Sesame Beamline: Soft X-ray absorption spectroscopy

 Investigation of strong metal support interaction (SMSI): Measure Si, Al and O K-edge. Check Ir-Si, Ir-Al, Ir-O coordination.

« Coordination geometry of alumina: Measure Al K-edge. Octahedral, tetrahedral and square planar geometry of Al can be distinguished.
 Quasi in-situ experiments under O, and H,: Measure Si, Al and O Kedge. Follow the changes in Ir-Si and Ir-O coordination

« Thermal aging of the catalysts: Follow the structural changes of the catalysts via measuring the Si, O and Al K-edge.

O K-edge (543.1 eV), Al K-edge (1559.6 eV), Si K-edge (1838.9 eV)

J

Very high Ir dispersion for 51r/Al,O; RR and 51r/La-Al,O; RR due to the
predominantly metallic Ir NPs = High CO adsorption pjispersionf, TOnsetl

Low CO uptake & High Ir dispersion for 51r/Si-Al,O; RR=> SMSI = Ir
sites less accessible to CO due to blockage of Ir sites with SiO,-AlO,
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I.  Formation of predominantly metallic Ir NPs

il.  High Ir dispersion

51r/Si-Al,O; RR - show a significant boost in the AP value
i.  Formation of predominantly Iré* species

il. High SSA

ii. High surface acidity

iv. High ADN uptake

\V. High SMSI V.




