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Hydrazine (N2H4) is the most commonly used propellant for in-orbit spacecraft propulsion. However, utilization of hydrazine in space missions has challenges associated with health, environment and safety

risks. Energetic ionic liquids (EILs) such as ammonium dinitramide (ADN) present themselves as environmentally friendly alternative fuels to hydrazine. Catalytic technologies developed for ADN based

propulsion systems should be resilient to high temperatures and should also be stable enough to be used in many consecutive cycles without a significant loss of activity. The conventional catalyst used for

hydrazine decomposition is ~30 wt.% Ir/Al2O3. The major drawbacks of this catalytic system are Ir sintering and particle size growth associated with thermal aging, as well as loss of surface area at elevated

temperatures. In the current work, influence of two different catalytic promoters (i.e., La or Si incorporated into the alumina support material) on the catalytic performance of Ir active sites in anaerobic ADN

decomposition were investigated [1]. Performance measurements were done via custom-design micro propulsion batch reactor. Structural characterization of the catalysts were carried out via XANES,

EXAFS, in-situ FTIR, CO Chemisorption, XRF, TPD, XRD, TEM and BET analysis techniques. Our findings revealed that 5Ir/Al2O3 and 5Ir/La-Al2O3 catalysts favorably lowered the onset temperature of

the ADN decomposition reaction, whereas 5Ir/Si-Al2O3 boosted the pressure generation during the reaction. The fundamental structure-functionality relationships unraveled in the current work may allow

design of novel catalytic systems for aerospace monopropellant propulsion systems with higher performance by simultaneous exploitation of Ir active sites with different electronic properties.

Motivation

5 wt.% Ir/Al2O3 and 5 wt.% Ir/X-Al2O3 catalysts were synthesized using incipient to wetness impregnation method. Ir sites were incorporated on the support materials in two successive impregnation cycles.

After initial impregnation and drying steps (60 °C in air for 8 h), two different preparation protocols were carried out;

First protocol: i) catalysts were calcined in air at 400 °C for 3 h, ii) impregnated with a second loading of 2.5 wt.% Ir, dried at 60 °C in air for 8 h, and calcined in air at 400 °C for 3 h, and iii) finally reduced

at 500 °C for 2 h under 100 ml/min 5% H2/Ar flow. Catalysts synthesized using this first protocol are designated in the text as “CCR”.

Second protocol: i) impregnated catalysts were reduced at 500 °C for 2 h under 100 ml/min 5% H2/Ar flow, ii) impregnated with a second loading of 2.5 wt.% Ir, dried at 60 °C in air for 8 h, and reduced at

500 °C for 2 h under 100 ml/min 5% H2/Ar flow. Catalysts synthesized using this second protocol are designated in the text as “RR” (e.g., 5Ir/Si-Al2O3 RR).
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Structural origins of the catalytic promotional effects on the

anaerobic decomposition of ADN on 5Ir/Al2O3, 5Ir/La-

Al2O3 and 5Ir/Si-Al2O3 catalysts were investigated. Our

findings can be summarized as follows;

5Ir/Al2O3 RR and 5Ir/La-Al2O3 RR → lowering the

activation energy (Ea) of the ADN decomposition reaction

(Low TOnset):

i. Formation of predominantly metallic Ir NPs

ii. High Ir dispersion

5Ir/Si-Al2O3 RR → show a significant boost in the ∆P value

i. Formation of predominantly Irδ+ species

ii. High SSA

iii. High surface acidity

iv. High ADN uptake

v. High SMSI

CONCLUSIONS

PERFORMANCE RESULTS
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Crystal Structure of synthesized catalysts: XRD
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Ideas for Helmholtz-Sesame Beamline: Soft X-ray absorption spectroscopy

• Investigation of strong metal support interaction (SMSI): Measure Si, Al and O K-edge. Check Ir-Si, Ir-Al, Ir-O coordination.

• Coordination geometry of alumina: Measure Al K-edge. Octahedral, tetrahedral and square planar geometry of Al can be distinguished.

• Quasi in-situ experiments under O2 and H2: Measure Si, Al and O Kedge. Follow the changes in Ir-Si and Ir-O coordination

• Thermal aging of the catalysts: Follow the structural changes of the catalysts via measuring the Si, O and Al K-edge.
O K-edge (543.1 eV), Al K-edge (1559.6 eV), Si K-edge (1838.9 eV)

Si-Al2O3


