

JLICH

Soft X-ray absorption Study of **Magnetic Materials**

09.09.2022 | Sabreen Hammouda s.hammouda@fz-juelich.de

X-ray Magnetic Circular Dichroism (XMCD)

Dichroism: dependence of absorption on the photon polarisation

Element (& direction) sensitive (net) magnetization

Member of the Helmholtz Association

XMCD:

Absorption \propto available final states

Two-step model:

Transfer of the photon helicity (angular momentum) onto the photo electron – due to spin-orbit coupling this goes partially onto the spin.

2. Transition with dipole selection rules $(\Delta l = \pm 1, \Delta s = 0)$ probes free final states for the spin direction of the photo electron.

XMCD: sum rules

Also dependence on orbital moment (directly, helicity transferred to Δm_ℓ)

Opposite spin-orbit coupling in $p_{3/2}(L3; j=\ell+s)$ und $p_{1/2}(L2; j=\ell-s)$

Spin- and orbital moments can be distinguished

Forschungszentrum

Multiferroics

Ferroelectricity through charge order?

Structure of LuFe₂O₄(LuFeO₃)_n (n=0,1,2)

Member of the Helmholtz Association

- n=2
 - $Lu_3Fe_4O_{10}$

- Rhombohedral (R3m, n even) [1]
- Hexagonal (P6₃/mmc, n odd) [2]
- Mössbauer spectroscopy studies : Fe-O mono-layer Fe³⁺ ions, while the bilayer contains Fe^{2.5+} [3,4]

Matsui, J.Appl. Cryst. (1980)
Kimizuka et al., Acta Crysta. (1976)
Matsui et al., Acta Crysta. (1979)
Tanaka et al., J. Magn. Magn. Mater. (1983)
Tanaka and lida, Hyperne Interact. (1994)

Magnetic properties vs stoichiometry

0.4*0.20*0.05 mm³

Crystal : CO₂:CO SC1:50 SC2:85 SC3:85 S1:90 S2:85

- Best *M*(*T*) curves still have no sharp features as observed for not intercalated compounds
- Variations even within one batch.
 - Crystals with higher oxygen content are smaller

Member of the Helmholtz Association [1] Hammouda et al., Phys. Rev. B 104, 174437

The high field studies on Lu₂Fe₃O₇ (SC3)

Forschungszentrum

9

[1] Hammouda et al., submitted to PRB.

Member of the Helmholtz Association

[2] LuFe₂O₄ data from de Groot, Ph.D. thesis, RWTH Aachen university. (2012)

X-ray magnetic circular dichroism (XMCD) on SC3

[1] Hammouda et al., Phys. Rev. B 104, 174437

Linear X-ray absorption spectra (LXAS) on SC3

Summary

- 1. Single crystals $Lu_2Fe_3O_7$ exhibit no long-range spin order.
- 2. Similar spin order in the bilayer as in $LuFe_2O_4$:
- comparable net moment to the bilayer of LuFe₂O₄
- $\frac{1}{3}\frac{1}{3}$ in-plane propagation.
- similar shape of the XMCD with net moment of the Fe²⁺ is the same
- 3. In the single layer, spins are paramagnetic-like in the first approximation.
- 4. Spin-charge coupling by XMCD, similar CO

Outlook

• Similar experiments will be done on quantum materials at HESEB.

Acknowledgements

Prof. Manuel Angst

The brain gain for one year funding.

Dr. Yixi Su Yishui Zhou

Dr. Eugen Weschke

Thanks all who helped !

Thanks for your attention!

Member of the Helmholtz Association