Science with TXPES: X-ray Photoelectron Spectroscopy (XPS) on Catalytically Active Surfaces

SARP KAYA

Chemistry Department, Koç University, Istanbul, Turkey KUTEM, Koç University TÜPRAŞ Energy Center

Surface Chemical Bond

How can we understand the nature of the chemical bonding between surfaces and adsorbates?

Elementary steps of catalytic conversion

- Molecular adsorption
- Dissociation
- Surface reaction
- Desorption

XPS Measurements (solid samples)

Light Sources in the World

Chemical Shifts

Provides information about

- Kind of atom
- Number of atoms
- Chemical shift

(Siegbahn et al.) Lab x-ray source: Resolution = $\sim 0.5 \text{ eV} \pmod{200}$

Chemical Shift: Nitrogen Doped Graphene

Hydrogenation of Single Layer Graphene on Subsurface Alloys

Carbon

HGr/Pt-3d-Pt(111)

Hydrogen

Gr/Pt-3d-Pt(111)

Platinum

Carbon 170, 636 (2020)

🛑 3d atom

HESEB Soft X-ray Workshop

Hydrogenation of Single Layer Graphene on Subsurface Alloys

Hydrogenation of graphene grown on subsurface alloys on Pt(111)

Charge transfer from Fe and Co to the subsurface atoms to the surface Pt(111) atoms: Reduces the extent of p-doping on graphene

Carbon 170, 636 (2020)

Gr/Pt(111) Gr/Pt-3d-Pt(111) HGr/Pt-3d-Pt(111)

F

Chemical State of Carbon in Various Functional groups

C 1s binding energy								
Functional group	284	285	286	287	288	289	290 291	292
C=C								
C-(C,H,S,Si)								
C-N								
C-O								
C-Cl								
C=O								
CHF								
N-C=O								
O-C-O			C		• 1			
CO ₃	Mar diff	iy sur: erent (tace s	pecies cal en	with	ment		
CF_2	can	be ide	entifie	d				

XPS is structure sensitive: CO on Pt(111)

CO/ Pt (111)

c(5×√3)

Pt 4f_{7/2}

 $h\nu = 125 eV$

Surface Science, 315, L983 (1994)

c(4 × 2) (4×4) Clean 72 71 70 Binding energy [eV]

O₂ dissociation on Pt(111)

J. Chem. Phys., 133, 224701 (2010)

Temperature ramp $\sim 0.1 \text{ K/s} = 0.7 \text{ K/sweep}$

O₂ dissociation on Pt(111)

Adlayers and Oxides

Oxide Formation on Platinum Surface

Phys. Rev. Lett. 107, 195502 (2011).

Various adsorbate species can be stabilized on Pt(111) under high temperature and pressure conditions.

Various adsorbate species can be stabilized on Pt(111) under high temperature and pressure conditions.

Various adsorbate species can be stabilized on Pt(111) under high temperature and pressure conditions.

Chemisorbed O-OH biphase

UHV

Chemical Conversion: Acetic Acid Conversion to Ketene on Cu₂O(100)

Identifying the Surface: Photon Energy

Satellites, more

The final state of the photoemission process contains a core hole which is coupled with the partially filled TM 3d states, giving rise to mainline broadening and satellite features in XPS spectra depending on the particular overlap between core levels and the valence states.

d-band center

Scaling Relationships

Strain and Ligand Effects

Strain and ligand effects modify the electronic structure of the catalytically active materials

Ligand

d-band Center

Strain induced change in the overlap between d-states leading to a change in the d-band width.

Change in the d-DOS, shift of the d-band center can be probed by spectroscopy.

X-ray Absorption and Emission Spectroscopy (XAS-XES)

- Dynamics •
- In-situ characterization

Electronic Structure

If you need to identify

- Surface elemental composition
- Chemical states

All you need is XPS 💙

But the technique also offers

- ARPES (UPS): complete band structure
- Ambient pressure XPS: XPS in gas or liquid environment
- Photoelectron diffraction (XPD): Periodicity of the surface
- Photoemission microscopy: spectral imaging
- Time-resolved XPS, ARTOF (Time of flight)